OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 691–695

Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies

Luping Du and Dingyuan Tang  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. 691-695 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (631 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Surface plasmons in graphene have many promising properties, such as high confinement, low losses, and gate-tunability. However, it is also the high confinement that makes them difficult to excite due to their large momentum mismatch with free-space mid-infrared light. We propose to use shaped graphene nano-vacancies to compensate for the momentum mismatch, revealing its high flexibility in graphene plasmon (GP) excitation and manipulation. We first examine the electromagnetic standing waves generated with a pair of straight vacancies, in order to verify the excitation of GPs and to illustrate their tunability with gate voltage. Plasmonic lenses are then designed to achieve the super-focusing of mid-infrared light and to generate plasmonic vortices in graphene. A0.0125λ0 hotspot is generated, far below the optical diffraction limit, hence revealing the capability of light control at deep-subwavelength scale.

© 2014 Optical Society of America

OCIS Codes
(130.3060) Integrated optics : Infrared
(220.3630) Optical design and fabrication : Lenses
(240.6680) Optics at surfaces : Surface plasmons
(080.4865) Geometric optics : Optical vortices

ToC Category:
Geometric Optics

Original Manuscript: November 12, 2013
Revised Manuscript: January 26, 2014
Manuscript Accepted: January 28, 2014
Published: March 11, 2014

Luping Du and Dingyuan Tang, "Manipulating propagating graphene plasmons at near field by shaped graphene nano-vacancies," J. Opt. Soc. Am. A 31, 691-695 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. L. Barnes, A. Dereux, and T. W. Ebbesen, “Surface plasmon subwavelength optics,” Nature 424, 824–830 (2003). [CrossRef]
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. J. B. Pendry, A. Aubry, D. R. Smith, and S. A. Maier, “Transformation optics and subwavelength control of light,” Science 337, 549–552 (2012). [CrossRef]
  4. A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater. 6, 183–191 (2007). [CrossRef]
  5. K. S. Novoselov, V. I. Fal’ko, L. Colombo, P. R. Gellert, M. G. Schwab, and K. Kim, “A roadmap for graphene,” Nature 490, 192–200 (2012). [CrossRef]
  6. M. Jablan, H. Buljan, and M. Soljacic, “Plasmonics in graphene at infrared frequencies,” Phys. Rev. B 80, 245435 (2009).
  7. J. N. Chen, M. Badioli, P. Alonso-Gonzalez, S. Thongrattanasiri, F. Huth, J. Osmond, M. Spasenovic, A. Centeno, A. Pesquera, P. Godignon, A. Z. Elorza, N. Camara, F. J. G. de Abajo, R. Hillenbrand, and F. H. L. Koppens, “Optical nano-imaging of gate-tunable graphene plasmons,” Nature 487, 77–81 (2012).
  8. Z. Fei, A. S. Rodin, G. O. Andreev, W. Bao, A. S. McLeod, M. Wagner, L. M. Zhang, Z. Zhao, M. Thiemens, G. Dominguez, M. M. Fogler, A. H. C. Neto, C. N. Lau, F. Keilmann, and D. N. Basov, “Gate-tuning of graphene plasmons revealed by infrared nano-imaging,” Nature 487, 82–85 (2012).
  9. A. N. Grigorenko, M. Polini, and K. S. Novoselov, “Graphene plasmonics,” Nat. Photonics 6, 749–758 (2012). [CrossRef]
  10. Q. L. Bao and K. P. Loh, “Graphene photonics, plasmonics, and broadband optoelectronic devices,” ACS Nano 6, 3677–3694 (2012). [CrossRef]
  11. A. Vakil and N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef]
  12. L. Ju, B. S. Geng, J. Horng, C. Girit, M. Martin, Z. Hao, H. A. Bechtel, X. G. Liang, A. Zettl, Y. R. Shen, and F. Wang, “Graphene plasmonics for tunable terahertz metamaterials,” Nat. Nanotechnol. 6, 630–634 (2011). [CrossRef]
  13. H. G. Yan, T. Low, W. J. Zhu, Y. Q. Wu, M. Freitag, X. S. Li, F. Guinea, P. Avouris, and F. N. Xia, “Damping pathways of mid-infrared plasmons in graphene nanostructures,” Nat. Photonics 7, 394–399 (2013). [CrossRef]
  14. A. Y. Nikitin, F. Guinea, F. J. Garcia-Vidal, and L. Martin-Moreno, “Surface plasmon enhanced absorption and suppressed transmission in periodic arrays of graphene ribbons,” Phys. Rev. B 85, 081405(R) (2012). [CrossRef]
  15. B. Wang, X. Zhang, F. J. Garcia-Vidal, X. C. Yuan, and J. Teng, “Strong coupling of surface plasmon polaritons in monolayer graphene sheet arrays,” Phys. Rev. Lett. 109, 073901 (2012). [CrossRef]
  16. V. V. Popov, T. Y. Bagaeva, T. Otsuji, and V. Ryzhii, “Oblique terahertz plasmons in graphene nanoribbon arrays,” Phys. Rev. B 81, 073404 (2010). [CrossRef]
  17. W. L. Gao, J. Shu, C. Y. Qiu, and Q. F. Xu, “Excitation of plasmonic waves in graphene by guided-mode resonances,” ACS Nano 6, 7806–7813 (2012). [CrossRef]
  18. W. Gao, G. Shi, Z. Jin, J. Shu, Q. Zhang, R. Vajtai, P. M. Ajayan, J. Kono, and Q. Xu, “Excitation and active control of propagating surface plasmon polaritons in graphene,” Nano Lett. 13, 3698–3702 (2013). [CrossRef]
  19. X. L. Zhu, W. Yan, P. U. Jepsen, O. Hansen, N. A. Mortensen, and S. S. Xiao, “Experimental observation of plasmons in a graphene monolayer resting on a two-dimensional subwavelength silicon grating,” Appl. Phys. Lett. 102, 131101 (2013). [CrossRef]
  20. V. G. Kravets, A. N. Grigorenko, R. R. Nair, P. Blake, S. Anissimova, K. S. Novoselov, and A. K. Geim, “Spectroscopic ellipsometry of graphene and an exciton-shifted van Hove peak in absorption,” Phys. Rev. B 81, 155413 (2010). [CrossRef]
  21. Q. Wang, J. Bu, P. S. Tan, G. H. Yuan, J. H. Teng, H. Wang, and X. C. Yuan, “Subwavelength-sized plasmonic structures for wide-field optical microscopic imaging with super-resolution,” Plasmonics 7, 427–433 (2012). [CrossRef]
  22. L. Du, D. Y. Lei, G. Yuan, H. Fang, X. Zhang, Q. Wang, D. Tang, C. Min, S. A. Maier, and X. Yuan, “Mapping plasmonic near-field profiles and interferences by surface-enhanced Raman scattering,” Sci. Rep. 3, 3064 (2013).
  23. L. P. Du, G. H. Yuan, D. Y. Tang, and X. C. Yuan, “Tightly focused radially polarized beam for propagating surface plasmon-assisted gap-mode Raman spectroscopy,” Plasmonics 6, 651–657 (2011). [CrossRef]
  24. H. Kim, J. Park, S. W. Cho, S. Y. Lee, M. Kang, and B. Lee, “Synthesis and dynamic switching of surface plasmon vortices with plasmonic vortex lens,” Nano Lett. 10, 529–536 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited