OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 696–703

Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens

O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. 696-703 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000696


View Full Text Article

Enhanced HTML    Acrobat PDF (506 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a theoretical analysis of the field distribution in the focal plane of a dispersionless, high numerical aperture (NA) aplanatic lens for an x-polarized short pulse. We compare the focused pulse spatial distribution with that of a focused continuous wave (CW) field and its temporal distribution with the profile of the incident pulse. Regardless of the aberration free nature of the focusing aplanatic lens, the temporal width of the focused pulse widens considerably for incident pulses with durations on the order of a few cycles due to the frequency-dependent nature of diffraction phenomena, which imposes a temporal diffraction limit for focused short pulses. The spatial distribution of the focused pulse is also affected by this dependence and is altered with respect to the diffraction limited distribution of the CW incident field. We have analyzed pulses with flat top and Gaussian spatial irradiance profiles and found that the focused pulse temporal widening is less for the Gaussian spatial irradiance pulse, whereas the spatial distribution variation is similar in both cases. We present results of the focused pulsewidth as a function of the NA for the two spatial irradiance distributions, which show that the Gaussian irradiance pulse outperforms the flat top pulse at preserving the incident pulse duration.

© 2014 Optical Society of America

OCIS Codes
(260.1960) Physical optics : Diffraction theory
(320.0320) Ultrafast optics : Ultrafast optics
(320.1590) Ultrafast optics : Chirping
(320.2250) Ultrafast optics : Femtosecond phenomena
(320.5540) Ultrafast optics : Pulse shaping
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:
Ultrafast Optics

History
Original Manuscript: November 13, 2013
Revised Manuscript: January 31, 2014
Manuscript Accepted: February 3, 2014
Published: March 11, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
O. G. Rodríguez-Herrera, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, "Temporal widening of a short polarized pulse focused with a high numerical aperture aplanatic lens," J. Opt. Soc. Am. A 31, 696-703 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-696


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. R. Zipfel, R. M. Williams, and W. W. Webb, “Nonlinear magic: multiphoton microscopy in the biosciences,” Nat. Biotechnol. 21, 1369–1377 (2003). [CrossRef]
  2. S. W. Hell, “Toward fluorescence nanoscopy,” Nat. Biotechnol. 21, 1347–1355 (2003). [CrossRef]
  3. M. Ross, S. I. Green, and J. Brand, “Short-pulse optical communications experiments,” Proc. IEEE 58, 1719–1726 (1970). [CrossRef]
  4. A. M. Weiner, “Femtosecond optical pulse shaping and processing,” Prog. Quantum Electron. 19, 161–237 (1995). [CrossRef]
  5. M. D. Perry, B. C. Stuart, P. S. Banks, M. D. Feit, V. Yanovsky, and A. M. Rubenchik, “Ultrashort-pulse laser machining of dielectric materials,” J. Appl. Phys. 85, 6803–6810 (1999). [CrossRef]
  6. R. R. Gattass and E. Mazur, “Femtosecond laser micromachining in transparent materials,” Nat. Photonics 2, 219–225 (2008). [CrossRef]
  7. M. Drescher, M. Hentschel, R. Kienberger, M. Uiberacker, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, and F. Krausz, “Time-resolved atomic inner-shell spectroscopy,” Nature 419, 803–807 (2002). [CrossRef]
  8. A. Stolow, A. E. Bragg, and D. M. Neumark, “Femtosecond time-resolved photoelectron spectroscopy,” Chem. Rev. 104, 1719–1758 (2004). [CrossRef]
  9. K. M. Romallosa, J. Bantang, and C. Saloma, “Three-dimensional light distribution near the focus of a tightly focused beam of few-cycle pulses,” Phys. Rev. A 68, 033812 (2003). [CrossRef]
  10. L. E. Helseth, “Strongly focused polarized light pulse,” Phys. Rev. E 72, 047602 (2005). [CrossRef]
  11. E. Wolf, “Electromagnetic diffraction in optical systems I. An integral representation of the image field,” Proc. R. Soc. London A 253, 349–357 (1959). [CrossRef]
  12. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London A 253, 358–379 (1959). [CrossRef]
  13. O. G. Rodríguez-Herrera, D. Lara, and C. Dainty, “Far-field polarization-based sensitivity to sub-resolution displacements of a sub-resolution scatterer in tightly focused fields,” Opt. Express 18, 5609–5628 (2010). [CrossRef]
  14. U. Morgner, F. X. Kärtner, S. H. Cho, Y. Chen, H. A. Haus, J. G. Fujimoto, E. P. Ippen, V. Scheuer, G. Angelow, and T. Tschudi, “Sub-two-cycle pulses from a Kerr-lens mode-locked Ti:sapphire laser,” Opt. Lett. 24, 411–413 (1999). [CrossRef]
  15. M. Born and E. Wolf, “Geometrical theory of optical imaging,” Principles of Optics (Cambridge University, 1999), pp. 179–180.
  16. J. Lin, O. G. Rodríguez-Herrera, F. Kenny, D. Lara, and J. C. Dainty, “Fast vectorial calculation of the volumetric focused field distribution by using a three-dimensional Fourier transform,” Opt. Express 20, 1060–1069 (2012). [CrossRef]
  17. M. Kempe, U. Stamm, B. Wilhelmi, and W. Rudolph, “Spatial and temporal transformation of femtosecond laser pulses by lenses and lens systems,” J. Opt. Soc. Am. B 9, 1158–1165 (1992). [CrossRef]
  18. F. C. Estrada-Silva, J. Garduño-Mejía, M. Rosete-Aguilar, C. J. Román-Moreno, and R. Ortega-Martínez, “Aberration effects on femtosecond pulses generated by nonideal achromatic doublets,” Appl. Opt. 48, 4723–4734 (2009). [CrossRef]
  19. E. T. Whittaker and G. Robinson, The Calculus of Observations: A Treatise on Numerical Mathematics, 4th ed. (Dover, 1967), pp. 156–158.
  20. S. Anaya-Vera, L. García-Martínez, M. Rosete-Aguilar, N. C. Bruce, and J. Garduño-Mejía, “Temporal spreading generated by diffraction in the focusing of ultrashort light pulses with perfectly conducting spherical mirrors,” J. Opt. Soc. Am. A 30, 1620–1626 (2013). [CrossRef]
  21. N. C. Bruce, M. Rosete-Aguilar, O. G. Rodríguez-Herrera, J. Garduño-Mejía, and R. Ortega-Martínez, “Spatial chirp in the focusing of few-optical-cycle pulses by a mirror,” J. Mod. Opt. 60, 1037–1044 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited