OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 716–729

Early representation of shape by onset synchronization of border-ownership-selective cells in the V1-V2 network

Yasuhiro Hatori and Ko Sakai  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. 716-729 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000716


View Full Text Article

Enhanced HTML    Acrobat PDF (1212 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Construction of surface is a crucial step toward the representation of shape through the integration of local information. Physiological studies have reported that the primary visual cortex (V1) codes the medial axis (MA) that is a skeletal structure equidistant from nearby contours, suggesting the early representation of surface in V1. Although the neural basis of surface construction has not been clarified, the onset synchronization of border ownership (BO)-selective cells is a plausible candidate for the generation of surface. We investigated computationally the representation of surface in a biophysically detailed model of primate V1-V2 networks. The simulation results showed that the simultaneous arrival of signals from BO-selective cells evoked strong responses of V1 cells located around the MA. The simulation results lead to a prediction that the perception of the direction of figure (DOF) depends on the degree of synchronous presentation of contour. We conducted a psychophysical experiment and showed that the perception of the DOF is biased toward a highly synchronized contour. These results suggest a crucial role of the onset synchronization of BO-selective cells for the construction of early representation of shape.

© 2014 Optical Society of America

OCIS Codes
(330.4060) Vision, color, and visual optics : Vision modeling
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: May 28, 2013
Revised Manuscript: November 2, 2013
Manuscript Accepted: January 1, 2014
Published: March 13, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Yasuhiro Hatori and Ko Sakai, "Early representation of shape by onset synchronization of border-ownership-selective cells in the V1-V2 network," J. Opt. Soc. Am. A 31, 716-729 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-716


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Zhou, H. S. Friedman, and R. von der Heydt, “Coding of border ownership in monkey visual cortex,” J. Neurosci. 20, 6594–6611 (2000).
  2. S. H. Kim and J. Feldman, “Globally inconsistent figure/ground relations induced by a negative part,” J. Vis. 9(10):8, 1–13 (2009).
  3. K. Sakai and H. Nishimura, “Surrounding suppression and facilitation in the determination of border ownership,” J. Cogn. Neurosci. 18, 562–579 (2006).
  4. N. R. Zhang and R. von der Heydt, “Analysis of the context integration mechanisms underlying figure-ground organization in the visual cortex,” J. Neurosci. 30, 6482–6496 (2010). [CrossRef]
  5. T. S. Lee, D. Mumford, R. Romero, and V. A. F. Lamme, “The role of the primary visual cortex in higher level vision,” Vis. Res. 38, 2429–2454 (1998). [CrossRef]
  6. X. Huang and M. A. Paradiso, “V1 response timing and surface filling-in,” J. Neurophysiol. 100, 539–547 (2008). [CrossRef]
  7. V. A. F. Lamme, “The neurophysiology of figure-ground segregation in primary visual cortex,” J. Neurosci. 15, 1605–1615 (1995).
  8. K. Zipser, V. A. F. Lamme, and P. H. Schiller, “Contextual modulation in primary visual cortex,” J. Neurosci. 16, 7376–7389 (1996).
  9. M. D. Lescroart and I. Biederman, “Cortical representation of medial axis structure,” Cereb. Cortex 23, 629–637 (2013). [CrossRef]
  10. C. C. Hung, E. T. Carlson, and C. E. Connor, “Medial axis shape coding in macaque inferotemporal cortex,” Neuron 74, 1099–1113 (2012). [CrossRef]
  11. I. Kovacs and B. Julesz, “Perceptual sensitivity maps within globally defined visual shapes,” Nature 370, 644–646 (1994). [CrossRef]
  12. I. Kovacs, A. Feher, and B. Julesz, “Medial-point description of shape: a representation for action coding and its psychophysical correlates,” Vis. Res. 38, 2323–2333 (1998). [CrossRef]
  13. Y. Hatori and K. Sakai, “Robust detection of medial-axis by onset synchronization of border-ownership selective cells and shape reconstruction from its medial-axis,” Lect. Notes Comput. Sci. 5506, 301–309 (2009). [CrossRef]
  14. D. Marr and H. K. Nishihara, “Representation and recognition of the spatial organization of three-dimensional shapes,” Proc. R. Soc. Lond. B, Biol. Sci. 200, 269–294 (1978). [CrossRef]
  15. B. B. Kimia, “On the role of medial geometry in human vision,” J. Physiol. Paris 97, 155–190 (2003).
  16. V. Froyen, J. Feldman, and M. Singh, “A bayesian framework for figure–ground interpretation,” Adv. Neural Inf. Process Syst. 23, 631–639 (2010).
  17. Y. Dong, S. Mihalas, F. Qiu, R. von der Heydt, and E. Niebur, “Synchrony and the binding problem in macaque visual cortex,” J. Vis. 8(7):30, 1–16 (2008).
  18. J. M. Samonds and A. B. Bonds, “Gamma oscillation maintains stimulus structure-dependent synchronization in cat visual cortex,” J. Neurophysiol. 93, 223–236 (2005). [CrossRef]
  19. Z. Zhou, M. R. Bernard, and A. B. Bonds, “Deconstruction of spatial integrity in visual stimulus detected by modulation of synchronized activity in cat visual cortex,” J. Neurosci. 28, 3759–3768 (2008). [CrossRef]
  20. A. Angelucci, J. B. Levitt, E. J. S. Walton, J. M. Hupe, J. Bullier, and J. S. Lund, “Circuits for local and global signal integration in primary visual cortex,” J. Neurosci. 22, 8633–8646 (2002).
  21. A. B. Sekuler and P. J. Bennett, “Generalized common fate: grouping by common luminance changes,” Psychol. Sci. 12, 437–444 (2001).
  22. P. J. Hancock, L. Walton, G. Mitchell, Y. Plenderleith, and W. A. Phillips, “Segregation by onset asynchrony,” J. Vis. 8(7):21, 1–21 (2008). [CrossRef]
  23. M. Usher and N. Donnelly, “Visual synchrony affects binding and segmentation in perception,” Nature 394, 179–182 (1998). [CrossRef]
  24. M. L. Hines and N. T. Carnevale, “The NEURON simulation environment,” Neural Comput. 9, 1179–1209 (1997). [CrossRef]
  25. V. Bringuier, F. Chavane, L. Glaeser, and Y. Fregnac, “Horizontal propagation of visual activity in the synaptic integration field of area 17 neurons,” Science 283, 695–699 (1999). [CrossRef]
  26. P. Girard, J. M. Hupe, and J. Bullier, “Feedforward and feedback connections between areas V1 and V2 of the Monkey have the similar rapid conduction velocities,” J. Neurophysiol. 85, 1328–1331 (2001).
  27. L. G. Nowak, M. H. Munk, P. Girard, and J. Bullier, “Visual latencies in areas V1 and V2 of the macaque monkey,” Vis. Neurosci. 12, 371–384 (1995). [CrossRef]
  28. A. L. Hodgkin and A. F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol. 117, 500–544 (1952).
  29. W. Gerstner and W. Kistler, Spiking Neuron Models: Single Neurons, Populations, Plasticity (Cambridge University, 2002).
  30. K. A. Archie and B. W. Mel, “A model for intradendritic computation of binocular disparity,” Nat. Neurosci. 3, 54–63 (2000). [CrossRef]
  31. H. E. Jones, W. Wang, and A. M. Sillito, “Spatial organization and magnitude of orientation contrast interactions in primate V1,” J. Neurophysiol. 88, 2796–2808 (2002). [CrossRef]
  32. T. S. Meese, R. J. Summers, D. J. Holmes, and S. A. Wallis, “Contextual modulation involves suppression and facilitation from the center and the surround,” J. Vis. 7(4):7, 1–21 (2007). [CrossRef]
  33. M. Carandini, D. J. Heeger, and J. A. Movshon, “Linearity and normalization in simple cells of the macaque primary visual cortex,” J. Neurosci. 17, 8621–8644 (1997).
  34. G. Deco and E. T. Rolls, “A neurodynamical cortical model of visual attention and invariant object recognition,” Vision Res. 44, 621–642 (2004). [CrossRef]
  35. T. Poggio and F. Girosi, “Regularization algorithm for learning that are equivalent to multilayer networks,” Science 247, 978–982 (1990). [CrossRef]
  36. L. G. Nowak and J. Builler, “The timing of information transfer in the visual system,” in Cerebral Cortex, K. S. Rockland, J. H. Kaas, and A. Peters, eds. (Plenum, 1997), Vol. 12, pp. 205–233.
  37. E. T. Rolls and G. Deco, Computational Neuroscience of Vision (Oxford University, 2002).
  38. C. C. Fowlkes, D. R. Martin, and J. Malik, “Local figure–ground cues are valid for natural images,” J. Vis. 7(8):2, 1–9 (2007). [CrossRef]
  39. L. Zhaoping, “V1 mechanisms and some figure–ground and border effects,” J. Physiol. Paris 97, 503–515 (2003).
  40. A. Cowey and E. T. Rolls, “Human cortical magnification factor and its relation to visual acuity,” Exp. Brain Res. 21, 447–454 (1974). [CrossRef]
  41. E. Craft, H. Schutze, E. Niebur, and R. von der Heydt, “A neural model of figure-ground organization,” J. Neurophysiol. 97, 4310–4326 (2007). [CrossRef]
  42. O. W. Layton, E. Mingolla, and A. Yazdanbakhsh, “Dynamic coding of border-ownership in visual cortex,” J. Vis. 12(13):8, 1–21 (2012). [CrossRef]
  43. L. F. Abbott, “A network of oscillators,” J. Phys. A 23, 3835–3859 (1990). [CrossRef]
  44. X. J. Wang and G. Buzsaki, “Gamma oscillation by synaptic inhibition in a hippocampal interneuronal network model,” J. Neurosci. 16, 6402–6413 (1996).
  45. A. Martin and R. von der Heydt, “Contour binding and selective attention increase coherence between neural signals in visual cortex,” Perception 40, 49 (2011).
  46. A. Martin and R. von der Heydt, “Binding and selective attention increase coherence between distant sites in early visual cortex,” J. Vis. 11(11), 179 (2011). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited