OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 846–851

Modal integration of Hartmann and Shack–Hartmann patterns

Geovanni Hernández-Gómez, Zacarías Malacara-Hernández, Daniel Malacara-Doblado, Rufino Díaz-Uribe, and Daniel Malacara-Hernández  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. 846-851 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (247 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Instead of measuring the wavefront deformations directly, Hartmann and Shack–Hartmann tests measure the wavefront slopes, which are equivalent to the ray transverse aberrations. Numerous different integration methods have been described in the literature to obtain the wavefront deformations from these measurements. Basically, they can be classified in two different categories, i.e., modal and zonal. In this work we describe a modal method to integrate Hartmann and Shack–Hartmann patterns using orthogonal wavefront slope aberration polynomials, instead of the commonly used Zernike polynomials for the wavefront deformations.

© 2014 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(220.1010) Optical design and fabrication : Aberrations (global)

ToC Category:
Geometric Optics

Original Manuscript: December 19, 2013
Revised Manuscript: February 17, 2014
Manuscript Accepted: February 19, 2014
Published: March 27, 2014

Geovanni Hernández-Gómez, Zacarías Malacara-Hernández, Daniel Malacara-Doblado, Rufino Díaz-Uribe, and Daniel Malacara-Hernández, "Modal integration of Hartmann and Shack–Hartmann patterns," J. Opt. Soc. Am. A 31, 846-851 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Hartmann, “Bemerkungen uber den bau und die justirung von spektrographen,” Z. Instrumentenkd 20, 2 (1900).
  2. B. Platt and R. V. Shack, “Lenticular Hartmann screen,” Newsletter 5, 15 (1971).
  3. D. Malacara, Optical Shop Testing (Wiley, 2007), Vol. 59.
  4. I. Ghozeil and J. E. Simmons, “Screen test for large mirrors,” Appl. Opt. 13, 1773–1777 (1974). [CrossRef]
  5. W. H. Southwell, “Wave-front estimation from wave-front slope measurements,” J. Opt. Soc. Am. 70, 998–1006 (1980). [CrossRef]
  6. R. Cubalchini, “Modal wave-front estimation from phase derivative measurements,” J. Opt. Soc. Am. 69, 972–977 (1979). [CrossRef]
  7. P. M. Prieto, F. Vargas-Martín, S. Goelz, and P. Artal, “Analysis of the performance of the Hartmann–Shack sensor in the human eye,” J. Opt. Soc. Am. A 17, 1388–1398 (2000). [CrossRef]
  8. A. Gavrielides, “Vector polynomials orthogonal to the gradient of Zernike polynomials,” Opt. Lett. 7, 526–528 (1982). [CrossRef]
  9. L. N. Thibos, A. Bradley, and X. Hong, “A statistical model of the aberration structure of normal, well-corrected eyes,” Ophthalmic Physiolog. Opt. 22, 427–433 (2002). [CrossRef]
  10. D. R. Neal, J. Copland, and D. A. Neal, “Shack–Hartmann wavefront sensor precision and accuracy,” Proc. SPIE 4779, 148–160 (2002). [CrossRef]
  11. V. P. Aksenov and Y. N. Isaev, “Analytical representation of the phase and its mode components reconstructed according to the wave-front slopes,” Opt. Lett. 17, 1180–1182 (1992). [CrossRef]
  12. E. Acosta, S. Bará, M. A. Rama, and S. Ríos, “Determination of phase mode components in terms of local wave-front slopes: an analytical approach,” Opt. Lett. 20, 1083–1085 (1995). [CrossRef]
  13. V. N. Mahajan, Optical Imaging and Aberrations, Part III: Wavefront Analysis (SPIE, 2013), Vol. PM221.
  14. K. Freischlad and C. L. Koliopoulos, “Modal estimation of a wavefront from difference measurements using the discrete Fourier transform,” J. Opt. Soc. Am. A 3, 1852–1861 (1986). [CrossRef]
  15. C. Canovas and E. N. Ribak, “Comparison of Hartmann analysis methods,” Appl. Opt. 46, 1830–1835 (2007). [CrossRef]
  16. S. Ríos, E. Acosta, and S. Bará, “Hartmann sensing with Albrecht grids,” Opt. Commun. 133, 443–453 (1997). [CrossRef]
  17. H. H. Hopkins, Wave Theory of Aberrations (Clarendon, 1950).
  18. Y. Mejía-Barbosa and D. Malacara-Hernández, “Object surface for applying a modified Hartmann test to measure corneal topography,” Appl. Opt. 40, 5778–5786 (2001). [CrossRef]
  19. S. A. Klein, “Corneal topography reconstruction algorithm that avoids the skew ray ambiguity and the skew ray error,” Optom. Vis. Sci. 74, 945–962 (1997). [CrossRef]
  20. S. A. Klein, “Axial curvature and the skew ray error in corneal topography,” Optom. Vis. Sci. 74, 931–944 (1997). [CrossRef]
  21. Y. Mejía-Barbosa, “A review of methods for measuring corneal topography,” Optom. Vis. Sci. 78, 240–253 (2001). [CrossRef]
  22. D. Malacara and S. DeVore, in Optical Shop Testing, 2nd ed. (Wiley-Intersicence, 1992), Chap. 13.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited