OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 863–871

Nonparametric noise estimation method for raw images

Miguel Colom, Antoni Buades, and Jean-Michel Morel  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. 863-871 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1658 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optimal denoising works at best on raw images (the image formed at the output of the focal plane, at the CCD or CMOS detector), which display a white signal-dependent noise. The noise model of the raw image is characterized by a function that given the intensity of a pixel in the noisy image returns the corresponding standard deviation; the plot of this function is the noise curve. This paper develops a nonparametric approach estimating the noise curve directly from a single raw image. An extensive cross-validation procedure is described to compare this new method with state-of-the-art parametric methods and with laboratory calibration methods giving a reliable ground truth, even for nonlinear detectors.

© 2014 Optical Society of America

OCIS Codes
(040.0040) Detectors : Detectors
(040.1520) Detectors : CCD, charge-coupled device
(040.3780) Detectors : Low light level
(100.2960) Image processing : Image analysis
(100.2980) Image processing : Image enhancement
(110.4280) Imaging systems : Noise in imaging systems

ToC Category:
Image Processing

Original Manuscript: November 20, 2013
Revised Manuscript: February 9, 2014
Manuscript Accepted: February 19, 2014
Published: March 31, 2014

Miguel Colom, Antoni Buades, and Jean-Michel Morel, "Nonparametric noise estimation method for raw images," J. Opt. Soc. Am. A 31, 863-871 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Milanfar, “A tour of modern image filtering: new insights and methods, both practical and theoretical,” IEEE Signal Process. Mag. 30(1), 106–128 (2013). [CrossRef]
  2. H. Rabbani, M. Sonka, and M. D. Abramoff, “Optical coherence tomography noise reduction using anisotropic local bivariate,” Int. J. Biomed. Imag. 3, 417491 (2011).
  3. J. Schmitt, J. L. Starck, J. M. Casandjian, J. Fadili, and I. Grenier, “Multichannel Poisson denoising and deconvolution on the sphere: application to the Fermi gamma ray space telescope,” Astron. Astrophys. 546, A114 (2012). [CrossRef]
  4. F. Luisier, T. Blu, and M. Unser, “Image denoising in mixed Poisson–Gaussian noise,” IEEE Trans. Image Process. 20, 696–708 (2011). [CrossRef]
  5. F.-X. Dupé, J. M. Fadili, and J.-L. Starck, “A proximal iteration for deconvolving Poisson noisy images using sparse representations,” IEEE Trans. Image Process. 18, 310–321 (2009). [CrossRef]
  6. H. Rabbani, R. Nezafat, and S. Gazor, “Wavelet-domain medical image denoising using bivariate laplacian mixture model,” IEEE Trans. Biomed. Eng. 56, 2826–2837 (2009). [CrossRef]
  7. B. Zhang, J. M. Fadili, and J.-L. Starck, “Wavelets, ridgelets, and curvelets for poisson noise removal,” IEEE Trans. Image Process. 17, 1093–1108 (2008). [CrossRef]
  8. M. Lebrun, M. Colom, A. Buades, and J. M. Morel, “Secrets of image denoising cuisine,” Acta Numerica 21, 475–576 (2012).
  9. E. D. Kolaczyk, “Wavelet shrinkage estimation of certain Poisson intensity signals using corrected thresholds,” Statist. Sin. 9, 119–135 (1999).
  10. R. D. Nowak and R. G. Baraniuk, “Wavelet-domain filtering for photon imaging systems,” IEEE Trans. Image Process. 8, 666–678 (1997). [CrossRef]
  11. S. Lefkimmiatis, P. Maragos, and G. Papandreou, “Bayesian inference on multiscale models for Poisson intensity estimation: application to photo-limited image denoising,” IEEE Trans. Image Process. 18, 1724–1741 (2009). [CrossRef]
  12. C. A. Deledalle, L. Denis, and F. Tupin, “Nl-insar: nonlocal interferogram estimation,” IEEE Trans. Geosci. Remote Sens. 49, 1441–1452 (2011). [CrossRef]
  13. A. Buades, B. Coll, and J. M. Morel, “A review of image denoising algorithms, with a new one,” Multiscale Model. Simul. 4, 490–530 (2005). [CrossRef]
  14. F. J. Anscombe, “The transformation of Poisson, binomial and negative-binomial data,” Biometrika 35, 246–254 (1948).
  15. M. Makitalo and A. Foi, “Optimal inversion of the Anscombe transformation in low-count Poisson image denoising,” IEEE Trans. Image Process. 20, 99–109 (2011). [CrossRef]
  16. A. Foi, “Noise estimation and removal in mr imaging: the variance-stabilization approach,” in 2011 IEEE International Symposium on Biomedical Imaging: From Nano to Macro (IEEE, 2011), pp. 1809–1814.
  17. J. Salmon, C.-A. Deledalle, and A. Dalalyan, “Image denoising with patch based PCA: local versus global,” in Proceedings of the British Machine Vision Conference (BMVA, 2011), pp. 25.1–25.10.
  18. N. N. Ponomarenko, V. V. Lukin, S. K. Abramov, K. O. Egiazarian, and J. T. Astola, “Blind evaluation of additive noise variance in textured images by nonlinear processing of block DCT coefficients,” in Proceedings of the International Society for Optics and Photonics. Electronic Imaging, Image Processing: Algorithms and Systems II (2003), Vol. 5014, pp. 178–189.
  19. H. Rabbani and S. Gazor, “Local probability distribution of natural signals in sparse domains,” Int. J. Adapt. Control Signal Process. 28, 52–62 (2014).
  20. V. I. A. Katkovnik, V. Katkovnik, K. Egiazarian, and J. Astola, Local Approximation Techniques in Signal and Image Processing (SPIE, 2006), Vol. PM157.
  21. S. Pyatykh, J. Hesser, and L. Zheng, “Image noise level estimation by principal component analysis,” IEEE Trans. Image Process. 22, 687–699 (2013). [CrossRef]
  22. J. S. Lee, “Refined filtering of image noise using local statistics,” Comp. Graph. Image Proc. 15, 380–389 (1981). [CrossRef]
  23. D. L. Donoho and I. Johnstone, “Ideal spatial adaptation by wavelet shrinkage,” Biometrika 81, 425–455 (1994). [CrossRef]
  24. D. L. Donoho and I. M. Johnstone, “Adapting to unknown smoothness via wavelet shrinkage,” J. Am. Stat. Assoc. 90, 1200–1224 (1995).
  25. R. Bracho and A. C. Sanderson, “Segmentation of images based on intensity gradient information,” in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (IEEE, 1985), pp. 19–23.
  26. J. Immerkaer, “Fast noise variance estimation,” Comput. Vis. Image Underst. 64, 300–302 (1996). [CrossRef]
  27. J. S. Lee and K. Hoppel, “Noise modelling and estimation of remotely-sensed images,” in Proceedings of the International Geoscience and Remote Sensing Symposium (1989), Vol. 2, pp. 1005–1008.
  28. G. A. Mastin, “Adaptive filters for digital image noise smoothing: an evaluation,” Comput. Vis. Graph. Image Process. 31, 103–121 (1985).
  29. P. Meer, J. M. Jolion, and A. Rosenfeld, “A fast parallel algorithm for blind estimation of noise variance,” IEEE Trans. Pattern Anal. Mach. Intell. 12, 216–223 (1990). [CrossRef]
  30. S. I. Olsen, “Estimation of noise in images: an evaluation,” Graph. Models Image Proc. 55, 319–323 (1993).
  31. N. N. Ponomarenko, V. V. Lukin, M. S. Zriakhov, A. Kaarna, and J. T. Astola, “An automatic approach to lossy compression of AVIRIS images,” in International Geoscience and Remote Sensing Symposium (IEEE, 2007), pp. 472–475.
  32. K. Rank, M. Lendl, and R. Unbehauen, “Estimation of image noise variance,” in IEEE Proceedings on Vision, Image and Signal Processing (IET, 1999), Vol. 146, pp. 80–84.
  33. H. Voorhees and T. Poggio, “Detecting textons and texture boundaries in natural image,” in Proceedings of the First International Conference on Computer Vision London (IEEE, 1987), pp. 250–258.
  34. A. Foi, M. Trimeche, V. Katkovnik, and K. Egiazarian, “Practical Poissonian-Gaussian noise modeling and fitting for single-image raw-data,” IEEE Trans. Image Process. 17, 1737–1754 (2008). [CrossRef]
  35. M. L. Uss, B. Vozel, V. V. Lukin, and K. Chehdi, “Image informative maps for component-wise estimating parameters of signal-dependent noise,” J. Electron. Imaging 22, 013019 (2013). [CrossRef]
  36. M. Uss, B. Vozel, V. Lukin, S. Abramov, I. Baryshev, and K. Chehdi, “Image informative maps for estimating noise standard deviation and texture parameters,” EURASIP J. Advances Signal Process. 2011, 806516 (2011).
  37. C. Liu, R. Szeliski, S. B. Kang, C. L. Zitnick, and W. T. Freeman, “Automatic estimation and removal of noise from a single image,” IEEE Trans. Pattern Anal. Mach. Intell. 30, 299–314 (2008). [CrossRef]
  38. P. L. Vora, J. E. Farrell, J. D. Tietz, and D. H. Brainard, “Linear models for digital cameras,” in IS&T Annual Conference (The Society for Imaging Science and Technology, 1997), pp. 377–382.
  39. M. Lebrun, A. Buades, and J. M. Morel, “A nonlocal Bayesian image denoising algorithm,” SIAM J. Imaging Sci. 6, 1665–1688 (2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited