OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: 886–890

Unbalanced lensless ghost imaging with thermal light

Lu Gao, Xiao-long Liu, Zhiyuan Zheng, and Kaige Wang  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. 886-890 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (437 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Lensless ghost imaging (LGI) with thermal light requires an equal length between the test and reference arms. When this condition is not met, the image becomes blurred. Here we propose an experimental scheme of LGI where the lengths of the two arms are not equal. Our experiment shows that when a glass rod is inserted into a longer arm, the clear image can be formed in the intensity correlation measurement of the two arms. The theoretical analysis can well explain the experimental results. The unbalanced LGI may provide an alternative scheme in practical application.

© 2014 Optical Society of America

OCIS Codes
(110.1650) Imaging systems : Coherence imaging
(270.0270) Quantum optics : Quantum optics

ToC Category:
Quantum Optics

Original Manuscript: December 19, 2013
Manuscript Accepted: February 18, 2014
Published: March 31, 2014

Lu Gao, Xiao-long Liu, Zhiyuan Zheng, and Kaige Wang, "Unbalanced lensless ghost imaging with thermal light," J. Opt. Soc. Am. A 31, 886-890 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. S. Bennink, S. J. Bentley, and R. W. Boyd, “Two-photon coincidence imaging with a classical source,” Phys. Rev. Lett. 89, 113601 (2002). [CrossRef]
  2. R. S. Bennink, S. J. Bentley, R. W. Boyd, and J. C. Howell, “Quantum and Classical Coincidence imaging,” Phys. Rev. Lett. 92, 033601 (2004). [CrossRef]
  3. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Correlated imaging, quantum and classical,” Phys. Rev. A 70, 013802 (2004). [CrossRef]
  4. A. Gatti, E. Brambilla, M. Bache, and L. A. Lugiato, “Ghost imaging with thermal light: comparing entanglement and classical correlation,” Phys. Rev. Lett. 93, 093602 (2004). [CrossRef]
  5. J. Cheng and Sh. Han, “Incoherent coincidence imaging and its applicability in x-ray diffraction,” Phys. Rev. Lett. 92, 093903 (2004). [CrossRef]
  6. K. Wang and D. Z. Cao, “Subwavelength coincidence interference with classical thermal light,” Phys. Rev. A 70, 041801(R) (2004). [CrossRef]
  7. Y. Cai and S. Y. Zhu, “Ghost interference with partially coherent radiation,” Opt. Lett. 29, 2716 (2004). [CrossRef]
  8. D. Z. Cao, J. Xiong, and K. Wang, “Geometrical optics in correlated imaging systems,” Phys. Rev. A 71, 013801 (2005). [CrossRef]
  9. A. Valencia, G. Scarcelli, M. D’Angelo, and Y. Shih, “Two-photon imaging with thermal light,” Phys. Rev. Lett. 94, 063601 (2005). [CrossRef]
  10. F. Ferri, D. Magatti, A. Gatti, M. Bache, E. Brambilla, and L. A. Lugiato, “High-resolution ghost image and ghost diffraction experiments with thermal light,” Phys. Rev. Lett. 94, 183602 (2005). [CrossRef]
  11. J. Xiong, D. Z. Cao, F. Huang, H. G. Li, X. J. Sun, and K. Wang, “Experimental observation of classical subwavelength interference with a pseudothermal light source,” Phys. Rev. Lett. 94, 173601 (2005). [CrossRef]
  12. D. Zhang, Y. H. Zhai, L. A. Wu, and X. H. Chen, “Correlated two-photon imaging with true thermal light,” Opt. Lett. 30, 2354 (2005). [CrossRef]
  13. Y. H. Zhai, X. H. Chen, D. Zhang, and L. A. Wu, “Two-photon interference with true thermal light,” Phys. Rev. A 72, 043805 (2005). [CrossRef]
  14. R. Borghi, F. Gori, and M. Santarsiero, “Phase and amplitude retrieval in ghost diffraction from field-correlation measurements,” Phys. Rev. Lett. 96, 183901 (2006). [CrossRef]
  15. M. Bache, D. Magatti, F. Ferri, A. Gatti, E. Brambilla, and L. A. Lugiato, “Coherent imaging of a pure phase object with classical incoherent light,” Phys. Rev. A 73, 053802 (2006). [CrossRef]
  16. A. Gatti, M. Bache, D. Magatti, E. Brambilla, F. Ferri, and L. Lugiato, “Coherent imaging with pseudo-thermal incoherent light,” J. Mod. Opt. 53, 739 (2006). [CrossRef]
  17. G. Scarcellia, V. Berardi, and Y. Shih, “Phase-conjugate mirror via two-photon thermal light imaging,” Appl. Phys. Lett. 88, 061106 (2006). [CrossRef]
  18. L. Basano and P. Ottonello, “Experiment in lensless ghost imaging with thermal light,” Appl. Phys. Lett. 89, 091109 (2006). [CrossRef]
  19. L. Gao, J. Xiong, L. F. Lin, W. Wang, S. H. Zhang, and K. Wang, “Interference from nonlocal double-slit with pseudo-thermal light,” Opt. Commun. 281, 2838–2841 (2008). [CrossRef]
  20. F. Ferri, D. Magatti, V. G. Sala, and A. Gatti, “Longitudinal coherence in thermal ghost imaging,” Appl. Phys. Lett. 92, 261109 (2008). [CrossRef]
  21. H. L. Liu and S. S. Han, “Spatial longitudinal coherence length of a thermal source and its influence on lensless ghost imaging,” Opt. Lett. 33, 824–826 (2008). [CrossRef]
  22. In the original papers of [20] and [21], the authors defined “longitudinal coherence” and “longitudinal coherence length,” respectively. But this denomination could be confused with the other quantity which is attributed to the coherence time multiplied by light velocity. It should be noted that the former concerns the width of the intensity correlation function while the latter concerns the disappearance of the intensity correlation.
  23. X. F. Liu, X. R. Yao, X. H. Chen, L. A. Wu, and G. J. Zhai, “Thermal light optical coherence tomography for transmissive objects,” J. Opt. Soc. Am. A 29, 1922 (2012). [CrossRef]
  24. H. Ch. Liu, D. S. Guan, L. Li, S. H. Zhang, and J. Xiong, “The impact of light polarization on imaging visibility of Nth-order intensity correlation with thermal light,” Opt. Commun. 283, 405–408 (2010). [CrossRef]
  25. S. H. Zhang, S. Gan, D. Zh. Cao, J. Xiong, X. D. Zhang, and K. Wang, “Phase-reversal diffraction in incoherent light,” Phys. Rev. A 80, 031805(R) (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited