OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A103–A112

Color coding in the primate visual pathway: a historical view

Barry B. Lee  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A103-A112 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A103


View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The physiology and anatomy of the primate visual pathway are reviewed from a historical perspective, especially in relation to color vision. From the work of the last decades, certain issues have been selected which remain unresolved and still pose a challenge for neurobiologists and psychophysicists. It is suggested that the structure of the primate visual pathway has been colored by the evolution of trichromacy and that many features of the parvocellular pathway represent adaptations to this end.

© 2014 Optical Society of America

OCIS Codes
(330.1070) Vision, color, and visual optics : Vision - acuity
(330.1720) Vision, color, and visual optics : Color vision
(330.1800) Vision, color, and visual optics : Vision - contrast sensitivity
(330.4270) Vision, color, and visual optics : Vision system neurophysiology

ToC Category:
Retinal and cortical color processing

History
Original Manuscript: September 13, 2013
Revised Manuscript: November 17, 2013
Manuscript Accepted: December 10, 2013
Published: January 21, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Barry B. Lee, "Color coding in the primate visual pathway: a historical view," J. Opt. Soc. Am. A 31, A103-A112 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A103


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. D. Mollon, “The origins of modern color science,” in The Science of Color, S. K. Shevell, ed. (Elsevier, 2003), pp. 1–40.
  2. B. B. Lee, “The evolution of concepts of color vision,” Neuroçiencias 4, 209–224 (2008).
  3. W. Trendelenberg and I. Schmidt, “Untersuchungen über das Farbensystem der Affen,” Fachschrift für vergleichende Physiologie 12, 249–278 (1930).
  4. W. F. Grether, “Color vision and color blindness in monkeys,” Comp. Psychol. Monogr. 15, 1–39 (1939).
  5. M. Balado and E. Franke, “Das corpus geniculatum externum: eine anatomische-klinische studie,” in Monographen aus dem Gesamtgebiete der Neurologie und Psychiatrie, O. Foerster, E. Rüdin, and H. Spatz, eds. (Springer, 1937), pp. 1–118.
  6. W. E. L. G. Clark, “The laminar organisation and cell content of the lateral geniculate body in the monkey,” J. Anat. 75, 419–433 (1941).
  7. P. Glees and W. E. L. G. Clark, “The termination of optic nerve fibres in the lateral geniculate body of the monkey,” J. Anat. 75, 295–308 (1941).
  8. W. E. L. G. Clark and G. G. Penman, “The projection of the retina in the lateral geniclate body,” Proc. R. Soc. B 114, 291–313 (1934). [CrossRef]
  9. S. Polyak, The Vertebrate Visual System (University of Chicago, 1957).
  10. W. E. L. G. Clark, “Anatomical basis of colour vision,” Nature 146, 558–559 (1940). [CrossRef]
  11. W. E. L. G. Clark and L. Chacko, “A possible central mechanism for colour vision,” Nature 160, 123–124 (1947). [CrossRef]
  12. W. E. Clark, “The laminar pattern of the lateral geniculate nucleus considered in relation to colour vision,” Doc. Ophthalmol. 3, 57–64 (1949). [CrossRef]
  13. G. L. Walls, The Lateral Geniculate Nucleus and Visual Histophysiology (University of California, 1953).
  14. S. L. Polyak, The Retina (University of Chicago, 1941).
  15. R. L. DeValois, C. J. Smith, S. T. Kitai, and A. J. Karoly, “Response of single cells in monkey lateral geniculate nucleus to monochromatic light,” Science 127, 238–239 (1958). [CrossRef]
  16. R. L. Devalois, G. H. Jacobs, and I. Abramov, “Responses of single cells in visual system to shifts in the wavelength of light,” Science 146, 1184–1186 (1964). [CrossRef]
  17. R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef]
  18. R. T. Marrocco and R. L. DeValois, “Locus of spectral neutral point in monkey opponent cells depends on stimulus luminance relative to background,” Brain Res. 119, 465–470 (1977). [CrossRef]
  19. B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. B 230, 293–314 (1987). [CrossRef]
  20. J. M. Crook, B. B. Lee, D. A. Tigwell, and A. Valberg, “Thresholds to chromatic spots of cells in the macaque geniculate nucleus as compared to detection sensitivity in man,” J. Physiol. 392, 193–211 (1987).
  21. P. Gouras, “Identification of cone mechanisms in monkey ganglion cells,” J. Physiol. 199, 533–547 (1968).
  22. F. M. de Monasterio, “Center and surround mechanisms of opponent-color X and Y ganglion cells of retina of macaques,” J. Neurophysiol. 41, 1418–1434 (1978).
  23. F. M. de Monasterio and P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
  24. F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Concealed colour-opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 217–229 (1975).
  25. F. M. de Monasterio, P. Gouras, and D. J. Tolhurst, “Trichromatic colour opponency in ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 187–216 (1975).
  26. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  27. B. G. Cleland, M. W. Dubin, and W. R. Levick, “Sustained and transient neurons in the cat’s retina and lateral geniculate nucleus,” J. Physiol. 217, 473–496 (1971).
  28. P. R. Martin and B. B. Lee, “Distribution and specificity of S-cone (“blue cone”) signals in subcortical visual pathways,” Vis. Neurosci. (to be published).
  29. D. M. Dacey and B. B. Lee, “The blue-ON opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994). [CrossRef]
  30. F. M. de Monasterio, “Properties of ganglion cells with atypical receptive field organization in retina of macaques,” J. Neurophysiol. 41, 1435–1449 (1978).
  31. L. C. Silveira, B. B. Lee, E. S. Yamada, J. Kremers, D. M. Hunt, P. R. Martin, and F. L. Gomes, “Ganglion cells of a short-wavelength-sensitive cone pathway in New World monkeys: morphology and physiology,” Vis. Neurosci. 16, 333–343 (1999). [CrossRef]
  32. T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  33. A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurons with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986). [CrossRef]
  34. D. M. Dacey, B. B. Peterson, and F. R. Robinson, “Identification of an S-cone opponent OFF pathway in the macaque retina: morphology, physiology and possible circuitry,” Invest. Ophthalmol. Vis. Sci. 43, E-abstract, 2983 (2002).
  35. A. Sher and S. H. DeVries, “A non-canonical pathway for mammalian blue-green color vision,” Nat. Neurosci. 15, 952–953 (2012). [CrossRef]
  36. K. Klug, S. Herr, I. T. Ngo, P. Sterling, and S. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 23, 9881–9887 (2003).
  37. S. C. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005). [CrossRef]
  38. D. M. Dacey, B. B. Peterson, F. R. Robinson, and P. D. Gamlin, “Fireworks in the primate retina: in vitro photodynamics reveals diverse LGN-projecting ganglion cell types,” Neuron 37, 15–27 (2003). [CrossRef]
  39. D. M. Dacey, H. W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K. Y. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef]
  40. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  41. J. D. Crook, C. M. Davenport, B. B. Peterson, O. S. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009). [CrossRef]
  42. C. Tailby, B. A. Szmajda, P. Buzas, B. B. Lee, and P. R. Martin, “Transmission of blue (S) cone signals through the primate lateral geniculate nucleus,” J. Physiol. 586, 5947–5967 (2008). [CrossRef]
  43. B. B. Lee, R. M. Shapley, M. J. Hawken, and H. Sun, “The spatial distributions of cone inputs to cells of the parvocellular pathway investigated with cone-isolating gratings,” J. Opt. Soc. Am. A 29, A223–A232 (2012). [CrossRef]
  44. S. H. Schwartz, Visual Perception: A Clinical Orientation, 3rd ed. (McGraw-Hill, 2004).
  45. P. Lennie and M. D. D’Zmura, “Mechanisms of color vision,” Crit. Rev. Neurobiol. 3, 333–400 (1988).
  46. C. Enroth-Cugell and J. G. Robson, “The contrast sensitivity of retinal ganglion cells of the cat,” J. Physiol. 187, 517–552 (1966).
  47. B. G. Cleland, W. R. Levick, and K. J. Sanderson, “Properties of sustained and transient ganglion cells in the cat retina,” J. Physiol. 228, 649–680 (1973).
  48. B. Dreher, Y. Fukuda, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).
  49. F. M. de Monasterio, “Properties of concentrically organised X and Y ganglion cells of macaque retina,” J. Neurophysiol. 41, 1394–1417 (1978).
  50. R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986). [CrossRef]
  51. H. Wässle, W. R. Levick, and B. G. Cleland, “The distribution of the alpha type of ganglion cells in the cat’s retina,” J. Comp. Neurol. 159, 419–437 (1975). [CrossRef]
  52. P. Gouras, “Antidromic responses of orthodromically identified ganglion cells in monkey retina,” J. Physiol. 204, 407–419 (1969).
  53. V. H. Perry and L. C. L. Silveira, “Functional lamination in the ganglion cell layer of the macaque’s retina,” J. Neurosci. 25, 217–223 (1988). [CrossRef]
  54. U. Grünert, U. Greferath, B. B. Boycott, and H. Wässle, “Parasol (Pα) ganglion cells of the primate fovea: immunocytochemical staining with antibodies against GABAA-receptors,” Vis. Res. 33, 1–14 (1993). [CrossRef]
  55. L. C. L. Silveira and V. H. Perry, “The topography of magnocellular projecting ganglion cells (M-ganglion cells) in the primate retina,” Neuroscience 40, 217–237 (1991). [CrossRef]
  56. P. Azzopardi, K. E. Jones, and A. Cowey, “Uneven mapping of magnocellular and parvocellular projections from the lateral geniculate nucleus to the striate cortex in the macaque monkey,” Vis. Res. 39, 2179–2189 (1999). [CrossRef]
  57. E. Kaplan and R. M. Shapley, “X and Y cells in the lateral geniculate nucleus of the macaque monkeys,” J. Physiol. 330, 125–143 (1982).
  58. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  59. C. Blakemore and F. Vital-Durand, “Organization and post-natal development of the monkey’s lateral geniculate nucleus,” J. Physiol. 380, 453–492 (1986).
  60. A. J. White, H. Sun, W. H. Swanson, and B. B. Lee, “An examination of physiological mechanisms underlying the frequency-doubling illusion,” Invest. Ophthalmol. Vis. Sci. 43, 3590–3599 (2002).
  61. J. D. Crook, B. B. Peterson, O. S. Packer, F. R. Robinson, J. B. Troy, and D. M. Dacey, “Y-cell receptive field and collicular projection of parasol ganglion cells in macaque monkey retina,” J. Neurosci. 28, 11277–11291 (2008). [CrossRef]
  62. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity and primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010). [CrossRef]
  63. O. Packer, A. E. Hendrickson, and C. A. Curcio, “Photoreceptor topography of the retina in the adult pigtail macaque (macaca nemestrina),” J. Comp. Neurol. 288, 165–183 (1989). [CrossRef]
  64. B. B. Boycott and J. E. Dowling, “Organization of the primate retina: light microscopy,” Phil. Trans. R. Soc. B, 255, 109–184 (1969). [CrossRef]
  65. D. I. A. MacLeod, D. R. Williams, and W. Makous, “A visual non-linearity fed by single cones,” Vis. Res. 32, 347–363 (1992). [CrossRef]
  66. B. G. Cleland, T. H. Harding, and U. Tulunay-Keesey, “Visual resolution and receptive field size: examination of two kinds of cat retinal ganglion cells,” Science 205, 1015–1017 (1979). [CrossRef]
  67. H. Wässle, L. Peichl, and B. B. Boycott, “Dendritic territories of cat retinal ganglion cells,” Nature 292, 344–345 (1981). [CrossRef]
  68. H. Wässle, L. Peichl, and B. B. Boycott, “Morphology and topography of on- and off-alpha cells in the cat retina,” Proc. R. Soc. B 212, 157–175 (1981). [CrossRef]
  69. F. W. Campbell and R. W. Gubisch, “Optical quality of the human eye,” J. Physiol. 186, 558–578 (1966).
  70. M. J. McMahon, M. J. Lankheet, P. Lennie, and D. R. Williams, “Fine structure of parvocellular receptive fields in the primate fovea revealed by laser interferometry,” J. Neurosci. 20, 2043–2053 (2000).
  71. L. C. Sincich, Y. Zhang, P. Tiruveedhula, J. C. Horton, and A. Roorda, “Resolving single cone inputs to visual receptive fields,” Nat. Neurosci. 12, 967–969 (2009). [CrossRef]
  72. H. Wässle and B. B. Boycott, “Functional architecture of the mammalian retina,” Physiol. Rev. 71, 447–480 (1991).
  73. R. D. Martin, Primate Origins and Evolution (Princeton University, 1990).
  74. G. H. Jacobs, “Primate color vision: a comparative perspective,” Vis. Neurosci. 25, 619–633 (2008). [CrossRef]
  75. J. Kremers, L. C. L. Silveira, E. S. Yamada, and B. B. Lee, “The ecology and evolution of primate color vision,” in Color Vision: From Molecular Genetics to Perception, K. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 123–142.
  76. J. D. Mollon, “Uses and evolutionary origins of primate color vision,” in Evolution of the Eye and Visual System, J. R. Cronly-Dillon and R. L. Gregory, eds. (MacMillan, 1991), pp. 306–319.
  77. P. Lennie and J. A. Movshon, “Coding of color and form in the geniculostriate visual pathway (invited review),” J. Opt. Soc. Am. A 22, 2013–2033 (2005). [CrossRef]
  78. P. R. Martin, E. M. Blessing, P. Buzas, B. A. Szmajda, and J. D. Forte, “Transmission of colour and acuity signals by parvocellular cells in marmoset monkeys,” J. Physiol. 589, 2795–2812 (2011). [CrossRef]
  79. O. D. Creutzfeldt, B. B. Lee, and A. Elepfandt, “A quantitative study of chromatic organisation and receptive fields of cells in the lateral geniculate body of the rhesus monkey,” Exp. Brain Res. 35, 527–545 (1979). [CrossRef]
  80. W. Paulus and A. Kröger-Paulus, “A new concept of retinal colour coding,” Vis. Res. 23, 529–540 (1983). [CrossRef]
  81. P. Lennie, P. W. Haake, and D. R. Williams, “The design of chromatically opponent receptive fields,” in Computational Models of Visual Processing, M. S. Landy and J. A. Movshon, eds. (MIT, 1991), pp. 71–82.
  82. R. C. Reid and R. M. Shapley, “Spatial structure of cone inputs to receptive fields in primate lateral geniculate nucleus,” Nature 356, 716–718 (1992). [CrossRef]
  83. R. C. Reid and R. M. Shapley, “Space and time maps of cone photoreceptor signals in macaque lateral geniculate nucleus,” J. Neurosci. 22, 6158–6175 (2002).
  84. B. B. Lee, J. Kremers, and T. Yeh, “Receptive fields of primate ganglion cells studied with a novel technique,” Vis. Neurosci. 15, 161–175 (1998). [CrossRef]
  85. P. Buzas, E. M. Blessing, B. A. Szmadja, and P. R. Martin, “Specificity of M and L cone inputs to receptive fields in the parvocellular pathway: random wiring with functional bias,” J. Neurosci. 26, 11148–11161 (2006). [CrossRef]
  86. D. J. Calkins and P. Sterling, “Absence of spectrally specific lateral inputs to midget ganglion cells in primate retina,” Nature 381, 613–615 (1996). [CrossRef]
  87. B. B. Lee, “Neural models and physiological reality,” Vis. Neurosci. 251, 231–241 (2008).
  88. H. Wässle, U. Grünert, P. R. Martin, and B. B. Boycott, “Color coding in the primate retina: predictions and constrants from anatomy,” in Structural and Functional Organization of the Neocortex. A Symposium in the Memory of Otto D. Creutzfeldt, B. Albowitz, K. Albus, U. Kuhnt, H. Ch. Nothdurft, and P. Wahle, eds. (Springer, 1994), pp. 94–104.
  89. K. T. Mullen, “Colour vision as a post-receptoral specialization of the central visual field,” Vis. Res. 31, 119–130 (1991). [CrossRef]
  90. K. T. Mullen and F. A. Kingdom, “Losses in peripheral colour sensitivity predicted from ‘hit or miss’ post-receptoral cone connections,” Vis. Res. 36, 1995–2000 (1996). [CrossRef]
  91. P. R. Martin, B. B. Lee, A. J. White, S. G. Solomon, and L. Rüttiger, “Chromatic sensitivity of ganglion cells in peripheral primate retina,” Nature 410, 933–936 (2001). [CrossRef]
  92. S. G. Solomon, B. B. Lee, A. J. White, L. Ruttiger, and P. R. Martin, “Chromatic organization of ganglion cell receptive fields in the peripheral retina,” J. Neurosci. 25, 4527–4539 (2005). [CrossRef]
  93. J. D. Crook, M. B. Manookin, O. S. Packer, and D. M. Dacey, “Horizontal cell feedback without cone type-selective inhibition mediates “red-green” color opponency in midget ganglion cells of the primate retina,” J. Neurosci. 31, 1762–1772 (2011). [CrossRef]
  94. H. Wassle, U. Grunert, M. H. Chun, and B. B. Boycott, “The rod pathway of the macaque monkey retina: identification of AII-amacrine cells with antibodies against calretinin,” J. Comp. Neurol. 361, 537–551 (1995). [CrossRef]
  95. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. U.S.A. 85, 4534–4537 (1988). [CrossRef]
  96. B. B. Lee, J. Pokorny, V. C. Smith, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997). [CrossRef]
  97. D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs in parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(11):4 (2010). [CrossRef]
  98. U. Grünert, “Anatomical evidence for rod input to the parvocellular pathway in primate,” Eur. J. Neurosci. 9, 617–621 (1997). [CrossRef]
  99. L. T. Sharpe and A. Stockman, “Dual rod pathways,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 53–66.
  100. H. B. Barlow, “Single units and sensation: a neuron doctrine for perceptual psychology?” Perception 1, 371–394 (1972). [CrossRef]
  101. S. Vanni, L. Henriksson, M. Viikari, and A. C. James, “Retinotopic distribution of chromatic responses in human primary visual cortex,” Eur. J. Neurosci. 24, 1821–1831 (2006). [CrossRef]
  102. K. T. Mullen, S. O. Dumoulin, K. L. McMahon, G. I. de Zubicaray, and R. F. Hess, “Selectivity of human retinotopic visual cortex to S-cone-opponent, L/M-cone-opponent and achromatic stimulation,” Eur. J. Neurosci. 25, 491–502 (2007). [CrossRef]
  103. D. D’Souza, “Do chromatic responses in V1 match retinal output or perceptual performance?” J. Vis. 7(15):60 (2007). [CrossRef]
  104. W. H. Swanson, T. Ueno, V. C. Smith, and J. Pokorny, “Temporal modulation sensitivity and pulse detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987). [CrossRef]
  105. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  106. B. B. Lee, H. Sun, and W. Zucchini, “The temporal properties of the response of macaque ganglion cells and central mechanisms of flicker detection,” J. Vis. 7(14):1 (2007). [CrossRef]
  107. M. J. Hawken, R. Shapley, F. Mechler, and D. L. Ringach, “Temporal frequency tuning of macaque V1 neurons to chromatic and luminance stimuli,” Invest. Ophthalmol. Vis. Sci. 38, S968 (1997).
  108. D. V. D’Souza, T. Auer, H. Strasburger, J. Frahm, and B. B. Lee, “An fMRI study of chromatic processing in humans: temporal characteristics of cortical visual areas,” J. Vis. 11(8):8 (2011). [CrossRef]
  109. L. Peichl and H. Wassle, “Size, scatter and coverage of ganglion cell receptive field centres in the cat retina,” J. Physiol. 291, 117–141 (1979).
  110. K. T. Mullen, “The contrast sensitivity of human colour vision to red-green and blue-yellow chromatic gratings,” J. Physiol. 359, 381–400 (1985).
  111. P. Gouras and E. Zrenner, “Enhancement of luminance flicker by color-opponent mechanisms,” Science 205, 587–589 (1979). [CrossRef]
  112. B. B. Lee, P. R. Martin, A. Valberg, and J. Kremers, “Physiological mechanisms underlying psychophysical sensitivity to combined luminance and chromatic modulation,” J. Opt. Soc. Am. A 10, 1403–1412 (1993). [CrossRef]
  113. M. J. Lankheet, P. Lennie, and J. Krauskopf, “Temporal-chromatic interactions in LGN P-cells,” Vis. Neurosci. 15, 47–54 (1998).
  114. E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retinal Eye Res. 9, 273–336 (1990). [CrossRef]
  115. S. G. Solomon and P. Lennie, “The machinery of colour vision,” Nat. Rev. Neurosci. 8, 276–286 (2007). [CrossRef]
  116. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011). [CrossRef]
  117. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983). [CrossRef]
  118. D. I. A. MacLeod and T. v. d. Twer, “The pleistochrome: optimal opponent codes for natural colours,” in Color Perception: Mind and the Physical World, R. Mausfeld and D. Heyer, eds. (Oxford University, 2003), pp. 155–184.
  119. C. R. Ingling and E. Martinez-Uriegas, “The spatio-chromatic signal of the r-g channel,” in Colour Vision: Physiology and Psychophysics, J. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 433–444.
  120. B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).
  121. B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “The spatial precision of macaque ganglion cell responses in relation to vernier acuity of human observers,” Vis. Res. 35, 2743–2758 (1995). [CrossRef]
  122. L. Rüttiger, B. B. Lee, and H. Sun, “Transient cells can be neurometrically sustained; the positional accuracy of retinal signals to moving targets,” J. Vis. 2(3):3, 232–242 (2002). [CrossRef]
  123. B. B. Lee, H. Sun, and A. Valberg, “Segregation of chromatic and luminance signals using a novel grating stimulus,” J. Physiol. 589, 59–73 (2011). [CrossRef]
  124. B. Cooper, H. Sun, and B. B. Lee, “Psychophysical and physiological responses to gratings with luminance and chromatic components of different spatial frequencies,” J. Opt. Soc. Am. A 29, A314–A323 (2012). [CrossRef]
  125. E. Hering, Zur Lehre vom Lichtsinne (Carl Gerold’s Sohn, 1878).
  126. L. M. Hurvich and D. Jameson, “An opponent-process theory of color vision,” Psychol. Rev. 64, 384–404 (1957). [CrossRef]
  127. A. Valberg, B. B. Lee, and J. Tryti, “Simulation of responses of spectrally opponent neurones in the macaque lateral geniculate nucleus to chromatic and achromatic light stimuli,” Vis. Res. 27, 867–882 (1987). [CrossRef]
  128. A. Valberg and T. Seim, “On the physiological basis of higher color metrics,” in From Pigments to Perception, A. Valberg and B. B. Lee, eds. (Plenum, 1991), pp. 425–436.
  129. R. L. DeValois and K. K. DeValois, “A multi-stage color model,” Vis. Res. 33, 1053–1065 (1993). [CrossRef]
  130. A. Valberg, “Unique hues: an old problem for a new generation,” Vis. Res. 41, 1645–1657 (2001). [CrossRef]
  131. J. D. Mollon and C. R. Cavonius, “The chromatic antagonisms of opponent process theory are not the same as those revealed in studies of detection and discrimination,” Doc. Ophthalmol. 46, 473–483 (1986).
  132. C. M. Stoughton and B. R. Conway, “Neural basis for unique hues,” Curr. Biol. 18, R698–R699 (2008). [CrossRef]
  133. J. D. Mollon, “A neural basis for unique hues?” Curr. Biol. 19, R441–R442; author reply R442–R443 (2009). [CrossRef]
  134. J. Mollon, “Monge: the verriest lecture, Lyon, July 2005,” Vis. Neurosci. 23, 297–309 (2006). [CrossRef]
  135. T. Dobzhansky, “Nothing in biology makes sense except in the light of evolution,” Am. Biol. Teach. 35, 443–452 (1964).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited