OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A113–A120

Temporal characteristics of L- and M-cone isolating steady-state electroretinograms

Deepika Kommanapalli, Ian J. Murray, Jan Kremers, Neil R. A. Parry, and Declan J. McKeefry  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A113-A120 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (519 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Cone isolating stimuli were used to assess the temporal frequency response characteristics of L- and M-cone electroretinograms (ERGs) in nine trichromatic and four dichromatic human observers. The stimuli comprised sinusoidal temporal modulations varying from 5 to 100 Hz. ERGs were recorded using corneal fiber electrodes and subjected to fast Fourier transform analysis. At low temporal frequencies (<10Hz) the L- and M-cone ERGs had similar amplitude and exhibited minimal differences in apparent latency. At higher flicker rates (>20Hz) L-cone ERGs had greater amplitudes and shorter apparent latencies than the M-cone responses. These differences between the L- and M-cone ERGs are consistent with their mediation by chromatic and luminance postreceptoral processing pathways at low and high temporal frequencies, respectively.

© 2014 Optical Society of America

OCIS Codes
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5380) Vision, color, and visual optics : Physiology

ToC Category:
Retinal and cortical color processing

Original Manuscript: September 30, 2013
Revised Manuscript: December 11, 2013
Manuscript Accepted: December 12, 2013
Published: January 21, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Deepika Kommanapalli, Ian J. Murray, Jan Kremers, Neil R. A. Parry, and Declan J. McKeefry, "Temporal characteristics of L- and M-cone isolating steady-state electroretinograms," J. Opt. Soc. Am. A 31, A113-A120 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. T. Brown and T. N. Wiesel, “Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye,” J. Physiol. 158, 257–280 (1961).
  2. D. C. Hood and D. G. Birch, “Human cone receptor activity: the leading edge of the a-wave and models of receptor activity,” Vis. Neurosci. 10, 857–871 (1993). [CrossRef]
  3. E. N. Pugh, B. Falsini, and A. L. Lyubarsky, “The origin of the major rod- and cone-driven components of the rodent electroretinogram and the effect of age and light-rearing history on the magnitude of these components,” in Photostasis and Related Phenomena, T. P. Williams and A. B. Thistle, eds. (Springer, 1998), pp. 93–128.
  4. C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004). [CrossRef]
  5. G. A. Fishman, D. G. Birch, G. E. Holder, and M. G. Brigell, “Electrophysiologic testing,” in Disorders of the Retina, Optic Nerve, and Visual Pathway, 2nd ed., Vol. 2 of Ophthalmology Monographs (Foundation of the American Academy of Ophthalmology, 2001).
  6. L. J. Frishman, “Origins of the electroretinogram,” in Principles and Practice of Clinical Electrophysiology of Vision, J. R. Heckenlively and G. B. Arden, eds. (Massachusetts Institute of Technology, 2006), pp. 139–184.
  7. K. R. Alexander, A. S. Rajagopalan, A. Raghuram, and G. A. Fishman, “Activation phase of cone phototransduction and the flicker electroretinogram in retinitis pigmentosa,” Vis. Res. 46, 2773–2785 (2006). [CrossRef]
  8. R. Verma and M. J. Pianta, “The contribution of human cone photoreceptors to the photopic flicker electroretinogram,” J. Vis. 9(3), 9 (2009). [CrossRef]
  9. S. A. Burns, A. E. Elsner, and M. R. Kreitz, “Analysis of nonlinearities in the flicker ERG,” Optom. Vis. Sci. 69, 95–105 (1992). [CrossRef]
  10. J. V. Odom, D. Reits, N. Burgers, and F. C. Riemslag, “Flicker electroretinograms—a systems analytic approach,” Optom. Vis. Sci. 69, 106–116 (1992). [CrossRef]
  11. W. H. Seiple, I. M. Siegel, R. E. Carr, and C. Mayron, “Evaluating macular function using the focal ERG,” Investig. Ophthalmol. Vis. Sci. 27, 1123–1130 (1986).
  12. M. Kondo and P. A. Sieving, “Primate photopic sine-wave flicker ERG: vector modeling analysis of component origins using glutamate analogs,” Investig. Ophthalmol. Vis. Sci. 42, 305–312 (2001).
  13. V. R. Krishna, K. R. Alexander, and N. S. Peachey, “Temporal properties of the mouse cone electroretinogram,” J. Neurophysiol. 87, 42–48 (2002).
  14. H. Qian, M. R. Shah, K. R. Alexander, and H. Ripps, “Two distinct processes are evident in rat cone flicker ERG responses at low and high temporal frequencies,” Exp. Eye Res. 87, 71–75 (2008). [CrossRef]
  15. H. Qian, K. R. Alexander, and H. Ripps, “Harmonic analysis of the cone flicker ERG of rabbit,” Exp. Eye Res. 91, 811–817 (2010). [CrossRef]
  16. G. Pangeni, F. K. Horn, and J. Kremers, “A new interpretation of components in the ERG signals to sine wave luminance stimuli at different temporal frequencies and contrasts,” Vis. Neurosci. 27, 79–90 (2010). [CrossRef]
  17. O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974). [CrossRef]
  18. O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982). [CrossRef]
  19. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003). [CrossRef]
  20. J. Kremers and G. Pangeni, “Electroretinographic responses to photoreceptor specific sine wave modulation,” J. Opt. Soc. Am. A 29, A306–A313 (2012). [CrossRef]
  21. V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995). [CrossRef]
  22. H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001). [CrossRef]
  23. J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15), 11 (2008). [CrossRef]
  24. J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010). [CrossRef]
  25. G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996). [CrossRef]
  26. J. Pokorny, V. C. Smith, and M. F. Wesner, “Variability in cone populations and implications,” in From Pigments to Perception: Advances in Understanding Visual Processes (Plenum, 1991), pp. 23–34.
  27. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  28. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000). [CrossRef]
  29. L. H. Van Der Tweel and H. F. Lunel, “Human visual responses to sinusoidally modulated light,” Electroencephalogr. Clin. Neurophysiol. 18, 587–598 (1965). [CrossRef]
  30. D. Regan, “Some characteristics of average steady-state and transient responses evoked by modulated light,” Electroencephalogr. Clin. Neurophysiol. 20, 238–248 (1966). [CrossRef]
  31. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
  32. H. De Lange Dzn, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. II. Phase shift in brightness and delay in color perception,” J. Opt. Soc. Am. 48, 784–789 (1958). [CrossRef]
  33. P. L. Walraven and H. J. Leebeek, “Phase shift of alternating coloured stimuli,” Doc. Ophthalmol. 18, 56–71 (1964). [CrossRef]
  34. B. A. Drum, “Cone interactions at high flicker frequencies—evidence for cone latency differences,” J. Opt. Soc. Am. 67, 1601–1603 (1977). [CrossRef]
  35. W. H. Swanson, T. Ueno, V. C. Smith, and J. Pokorny, “Temporal-modulation sensitivity and pulse-detection thresholds for chromatic and luminance perturbations,” J. Opt. Soc. Am. A 4, 1992–2005 (1987). [CrossRef]
  36. W. H. Swanson, J. Pokorny, and V. C. Smith, “Effects of temporal frequency on phase-dependent sensitivity to heterochromatic flicker,” J. Opt. Soc. Am. A 4, 2266–2273 (1987). [CrossRef]
  37. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996). [CrossRef]
  38. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993). [CrossRef]
  39. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  40. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion-cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  41. J. Kremers, B. B. Lee, and P. K. Kaiser, “Sensitivity of macaque retinal ganglion-cells and human observers to combined luminance and chromatic temporal modulation,” J. Opt. Soc. Am. A 9, 1477–1485 (1992). [CrossRef]
  42. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011). [CrossRef]
  43. J. Krauskopf, “Relative number of long- and middle-wavelength sensitive cones in the human fovea,” J. Opt. Soc. Am. A 17, 510–516 (2000). [CrossRef]
  44. J. Neitz, J. Carroll, Y. Yamauchi, M. Neitz, and D. R. Williams, “Color perception is mediated by a plastic neural mechanism that is adjustable in adults,” Neuron 35, 783–792 (2002). [CrossRef]
  45. G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997). [CrossRef]
  46. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological-basis of heterochromatic flicker photometry demonstrated in the ganglion-cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  47. H. De Lange Dzn, “Research into the dynamic nature of the human fovea-cortex systems with intermittent and modulated light. I. Attenuation characteristics with white and colored light,” J. Opt. Soc. Am. 48, 777–784 (1958). [CrossRef]
  48. N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012). [CrossRef]
  49. F. M. De Monasterio and P. Gouras, “Functional properties of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
  50. B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).
  51. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
  52. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  53. R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986). [CrossRef]
  54. B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. B 230, 293–314 (1987). [CrossRef]
  55. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  56. P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990). [CrossRef]
  57. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  58. P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
  59. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).
  60. D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retinal Eye Res. 18, 737–763 (1999). [CrossRef]
  61. R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996). [CrossRef]
  62. R. A. Stockton and M. M. Slaughter, “The b-wave of the electroretinogram; a reflection of ON-bipolar cell activity,” J. Gen. Physiol. 93, 101–122 (1989). [CrossRef]
  63. B. B. Boycott and H. Wassle, “Morphological classification of bipolar cells of the primate retina,” Eur. J. Neurosci. 3, 1069–1088 (1991). [CrossRef]
  64. H. Wassle, U. Grünert, P. R. Martin, and B. B. Boycott, “Immunocytochemical characterization and spatial distribution of midget bipolar cells in the macaque monkey retina,” Vis. Res. 34, 561–579 (1994). [CrossRef]
  65. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000). [CrossRef]
  66. B. B. Lee, P. R. Martin, and U. Grünert, “Retinal connectivity in primate vision,” Prog. Retinal Eye Res. 29, 622–639 (2010). [CrossRef]
  67. W. Li and H. DeVries, “Bipolar cells pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006). [CrossRef]
  68. B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited