OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A131–A139

Contributions of rhodopsin, cone opsins, and melanopsin to postreceptoral pathways inferred from natural image statistics

Pablo A. Barrionuevo and Dingcai Cao  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A131-A139 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A131


View Full Text Article

Enhanced HTML    Acrobat PDF (861 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Visual neural representation is constrained by the statistical properties of the environment. Prior analysis of cone pigment excitations for natural images revealed three principal components corresponding to the major retinogeniculate pathways identified by anatomical and physiological studies in primates. Here, principal component analyses were conducted on the excitations of rhodopsin, cone opsins, and melanopsin for nine hyperspectral images under 21 natural illuminants. The results suggested that rhodopsin and melanopsin may contribute to the three major retinogeniculate pathways. Rhodopsin and melanopsin may provide additional constraints in natural scene statistics, leading to new components that cannot be revealed by analysis based on cone opsin excitations only.

© 2014 Optical Society of America

OCIS Codes
(100.2960) Image processing : Image analysis
(330.1720) Vision, color, and visual optics : Color vision
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Retinal and cortical color processing

History
Original Manuscript: September 24, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 15, 2013
Published: January 24, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Pablo A. Barrionuevo and Dingcai Cao, "Contributions of rhodopsin, cone opsins, and melanopsin to postreceptoral pathways inferred from natural image statistics," J. Opt. Soc. Am. A 31, A131-A139 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A131


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. B. Lee, “Visual pathways and psychophysical channels in the primate,” J. Physiol. 589, 41–47 (2011). [CrossRef]
  2. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000). [CrossRef]
  3. H. Sun, H. E. Smithson, Q. Zaidi, and B. B. Lee, “Specificity of cone inputs to macaque retinal ganglion cells,” J. Neurophysiol. 95, 837–849 (2006). [CrossRef]
  4. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurones in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  5. B. B. Lee, J. Pokorny, V. C. Smith, P. R. Martin, and A. Valberg, “Luminance and chromatic modulation sensitivity of macaque ganglion cells and human observers,” J. Opt. Soc. Am. A 7, 2223–2236 (1990). [CrossRef]
  6. W. S. Geisler, “Visual perception and the statistical properties of natural scenes,” Annu. Rev. Psychol. 59, 167–192 (2008). [CrossRef]
  7. E. P. Simoncelli and B. A. Olshausen, “Natural image statistics and neural representation,” Annu. Rev. Neurosci. 24, 1193–1216 (2001). [CrossRef]
  8. D. L. Ruderman, T. W. Cronin, and C.-C. Chiao, “Statistics of cone responses to natural images: implications for visual coding,” J. Opt. Soc. Am. A 15, 2036–2045 (1998). [CrossRef]
  9. G. Buchsbaum and A. Gottschalk, “Trichromacy, opponent colours coding and optimum colour information transmission in the retina,” Proc. R. Soc. B 220, 89–113 (1983). [CrossRef]
  10. G. H. Jocobs, “Recent progress in understanding mammalian color vision,” Ophthalmic Physiolog. Opt. 30, 422–434 (2010). [CrossRef]
  11. G. H. Jacobs, J. F. Deegan, J. Neitz, M. A. Crognale, and M. Neitz, “Photopigments and color vision in the nocturnal monkey, Aotus,” Vis. Res. 33, 1773–1783 (1993). [CrossRef]
  12. D. Osorio and M. Vorobyev, “A review of the evolution of animal colour vision and visual communication signals,” Vis. Res. 48, 2042–2051 (2008). [CrossRef]
  13. R. H. Masland, “The fundamental plan of the retina,” Nat. Neurosci. 4, 877–886 (2001). [CrossRef]
  14. N. W. Daw, E. J. Jensen, and W. J. Brunken, “Rod pathways in the mammalian retinae,” Trends Neurosci. 13, 110–115 (1990). [CrossRef]
  15. L. T. Sharpe and A. Stockman, “Rod pathways: the importance of seeing nothing,” Trends Neurosci. 22, 497–504 (1999). [CrossRef]
  16. S. L. Buck, “The interaction of rod and cone signals: pathways and psychophysics,” in The New Visual Neurosciences, J. S. Werner and L. M. Chalupa, eds. (MIT, 2014), pp. 485–497.
  17. P. Gouras and K. Link, “Rod and cone interaction in dark-adapted monkey ganglion cells,” J. Physiol. 184, 499–510 (1966).
  18. V. Virsu and B. B. Lee, “Light adaptation in cells of macaque lateral geniculate nucleus and its relation to human light adaptation,” J. Neurophysiol. 50, 864–878 (1983).
  19. B. B. Lee, V. C. Smith, J. Pokorny, and J. Kremers, “Rod inputs to macaque ganglion cells,” Vis. Res. 37, 2813–2828 (1997). [CrossRef]
  20. V. Virsu, B. B. Lee, and O. D. Creutzfeldt, “Mesopic spectral responses and the Purkinje shift of macaque lateral geniculate cells,” Vis. Res. 27, 191–200 (1987). [CrossRef]
  21. K. Purpura, E. Kaplan, and R. M. Shapley, “Background light and the contrast gain of primate P and M retinal ganglion cells,” Proc. Natl. Acad. Sci. USA 85, 4534–4537 (1988). [CrossRef]
  22. D. Cao, B. B. Lee, and H. Sun, “Combination of rod and cone inputs to in the parasol ganglion cells of the magnocellular pathway,” J. Vis. 10(2):11 (2010). [CrossRef]
  23. T. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  24. J. D. Crook, C. M. Davenport, B. B. Peterson, O. Packer, P. B. Detwiler, and D. M. Dacey, “Parallel ON and OFF cone bipolar inputs establish spatially coextensive receptive field structure of blue-yellow ganglion cells in primate retina,” J. Neurosci. 29, 8372–8387 (2009). [CrossRef]
  25. G. D. Field, M. Greschner, J. L. Gauthier, C. Rangel, J. Shlens, A. Sher, D. W. Marshak, A. M. Litke, and E. J. Chichilnisky, “High-sensitivity rod photoreceptor input to the blue-yellow color opponent pathway in macaque retina,” Nat. Neurosci. 12, 1159–1164 (2009). [CrossRef]
  26. D. Cao, J. Pokorny, V. C. Smith, and A. J. Zele, “Rod contributions to color perception: linear with rod contrast,” Vis. Res. 48, 2586–2592 (2008). [CrossRef]
  27. D. Cao, J. Pokorny, and V. C. Smith, “Matching rod percepts with cone stimuli,” Vis. Res. 45, 2119–2128 (2005). [CrossRef]
  28. S. L. Buck, R. F. Knight, and J. Bechtold, “Opponent-color models and the influence of rod signals on the loci of unique hues,” Vis. Res. 40, 3333–3344 (2000). [CrossRef]
  29. H. B. Barlow, “What causes trichromacy? A theoretical analysis using comb-filtered spectra,” Vis. Res. 22, 635–643 (1982). [CrossRef]
  30. J. Van Hateren, “Spatial, temporal and spectral pre-processing for colour vision,” Proc. R. Soc. Lond. 251, 61–68 (1993). [CrossRef]
  31. D. M. Berson, F. A. Dunn, and M. Takao, “Phototransduction by retinal ganglion cells that set the circadian clock,” Science 295, 1070–1073 (2002). [CrossRef]
  32. S. Hattar, H. W. Liao, M. Takao, D. M. Berson, and K. W. Yau, “Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity,” Science 295, 1065–1070 (2002). [CrossRef]
  33. D. M. Dacey, H. Liao, B. Peterson, F. Robinson, V. C. Smith, J. Pokorny, K. W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal color and irradiance and project to the LGN,” Nature 433, 749–754 (2005). [CrossRef]
  34. D. McDougal and P. Gamlin, “Pupillary control pathways,” in The Senses: A Comprehensive Reference (2008), Vol. 1, 521–536.
  35. G. S. Lall, V. L. Revell, H. Momiji, J. Al Enezi, C. M. Altimus, A. D. Güler, C. Aguilar, M. A. Cameron, S. Allender, and M. W. Hankins, “Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance,” Neuron 66, 417–428 (2010). [CrossRef]
  36. S. Hattar, R. J. Lucas, N. Mrosovsky, S. Thompson, R. Douglas, M. W. Hankins, J. Lem, M. Biel, F. Hofmann, and R. G. Foster, “Melanopsin and rod–cone photoreceptive systems account for all major accessory visual functions in mice,” Nature 424, 75–81 (2003). [CrossRef]
  37. N. F. Ruby, T. J. Brennan, X. Xie, V. Cao, P. Franken, H. C. Heller, and B. F. O’Hara, “Role of melanopsin in circadian responses to light,” Science 298, 2211–2213 (2002). [CrossRef]
  38. T. M. Brown, S.-i. Tsujimura, A. E. Allen, J. Wynne, R. Bedford, G. Vickery, A. Vugler, and R. J. Lucas, “Melanopsin-based brightness discrimination in mice and humans,” Curr. Biol. 22, 1134–1141 (2012). [CrossRef]
  39. H. Horiguchi, J. Winawer, R. F. Dougherty, and B. A. Wandell, “Human trichromacy revisited,” Proc. Natl. Acad. Sci. USA 110, E260–E269 (2013). [CrossRef]
  40. D. H. Foster, K. Amano, S. Nascimento, and M. J. Foster, “Frequency of metamerism in natural scenes,” J. Opt. Soc. Am. A 23, 2359–2372 (2006). [CrossRef]
  41. S. Nascimento, F. P. Ferreira, and D. H. Foster, “Statistics of spatial cone-excitation ratios in natural scenes,” J. Opt. Soc. Am. A 19, 1484–1490 (2002). [CrossRef]
  42. S. Nascimento and O. Masuda, “Psychophysical optimization of lighting spectra for naturalness, preference, and chromatic diversity,” J. Opt. Soc. Am. A 29, A144–A151 (2012). [CrossRef]
  43. J. M. M. Linhares and S. M. C. Nascimento, “A chromatic diversity index based on complex scenes,” J. Opt. Soc. Am. A 29, A174–A181 (2012). [CrossRef]
  44. G. Wyszecki and W. S. Stiles, Color Science—Concepts and Methods, Quantitative Data and Formulae, 2nd ed. (Wiley, 1982), pp. 1–950.
  45. R. Stair and R. Johnston, “Ultraviolet spectral radiant energy reflected from the moon,” J. Res. Nat. Bureau Stan. 51, 81–84 (1953). [CrossRef]
  46. J. Hernandez-Andres, R. L. Lee, and J. Romero, “Calculating correlated color temperatures across the entire gamut of daylight and skylight chromaticities,” Appl. Opt. 38, 5703–5709 (1999). [CrossRef]
  47. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  48. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces, with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996). [CrossRef]
  49. J. al Enezi, V. Revell, T. Brown, J. Wynne, L. Schlangen, and R. Lucas, “A “melanopic” spectral efficiency function predicts the sensitivity of melanopsin photoreceptors to polychromatic lights,” J. Biol. Rhythms 26, 314–323 (2011). [CrossRef]
  50. I. Jolliffe, “Principal component analysis,” in Encyclopedia of Statistics in Behavioral Science, B. S. Everitt and D. Howell, eds. (Wiley Online Library, 2005).
  51. M. B. Richman, “A cautionary note concerning a commonly applied eigenanalysis procedure,” Tellus B 40, 50–58 (1988). [CrossRef]
  52. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1185 (1979). [CrossRef]
  53. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  54. P. H. Li, J. Verweij, J. H. Long, and J. L. Schnapf, “Gap-junctional coupling of mammalian rod photoreceptors and its effect on visual detection,” J. Neurosci. 32, 3552–3562 (2012). [CrossRef]
  55. M. Hatori and S. Panda, “The emerging roles of melanopsin in behavioral adaptation to light,” Trends Mol. Med. 16, 435–446 (2010).
  56. H. Sun, J. Pokorny, and V. C. Smith, “Rod-cone interactions assessed in inferred postreceptoral pathways,” J. Vis. 1(1), 42–54 (2001). [CrossRef]
  57. E. P. Hornstein, J. Verweij, P. H. Li, and J. L. Schnapf, “Gap-junctional coupling and absolute sensitivity of photoreceptors in Macaque retina,” J. Neurosci. 25, 11201–11209 (2005). [CrossRef]
  58. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  59. B. R. Conway, “Spatial structure of cone inputs to color cells in alert macaque primary visual cortex (v-1),” J. Neurosci. 21, 2768–2783 (2001).
  60. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  61. E. Goddard, D. J. Mannion, J. S. McDonald, S. G. Solomon, and C. W. Clifford, “Combination of subcortical color channels in human visual cortex,” J. Vis. 10(5), 25 (2010). [CrossRef]
  62. M. V. Danilova and J. Mollon, “Parafoveal color discrimination: a chromaticity locus of enhanced discrimination,” J. Vis. 10(1), 4 (2010). [CrossRef]
  63. D. Cao, “S-cone discrimination in the presence of two adapting fields: data and model,” J. Opt. Soc. Am. A 31, A65–A74 (2014).
  64. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008). [CrossRef]
  65. C. Ribelayga, Y. Cao, and S. C. Mangel, “The circadian clock in the retina controls rod-cone coupling,” Neuron 59, 790–801 (2008). [CrossRef]
  66. B. C. Regan, C. Julliot, B. Simmen, F. Viénot, P. Charles-Dominique, and J. D. Mollon, “Fruits, foliage and the evolution of primate colour vision,” Philos. Trans. R. Soc. B 356, 229–283 (2001). [CrossRef]
  67. N. J. Dominy and P. W. Lucas, “Ecological importance of trichromatic vision to primates,” Nature 410, 363–366 (2001). [CrossRef]
  68. P. Sumner and J. Mollon, “Chromaticity as a signal of ripeness in fruits taken by primates,” J. Exp. Biol. 203, 1987–2000 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited