OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A15–A22

Physiological correlates of watercolor effect

Andrew J. Coia, Christopher Jones, Chad S. Duncan, and Michael A. Crognale  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A15-A22 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The watercolor effect is a visual illusion that manifests itself as a combination of long-range color spreading and figure–ground organization. The current study uses behavioral and physiological measures to study the watercolor effect. We utilize a novel technique of measuring the cortical response of the illusion using the visual evoked potential (VEP). To this end, three experiments were done to investigate the contributions of luminance and hue to the magnitude of the illusion. Results of both VEP and behavior indicate a marked decrease in the S (yellow) direction in illusion magnitude compared to the +S (blue) illusion, even though these colors were previously matched for perceptual salience.

© 2013 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5380) Vision, color, and visual optics : Physiology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Retinal and cortical color processing

Original Manuscript: October 3, 2013
Manuscript Accepted: October 23, 2013
Published: December 19, 2013

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Andrew J. Coia, Christopher Jones, Chad S. Duncan, and Michael A. Crognale, "Physiological correlates of watercolor effect," J. Opt. Soc. Am. A 31, A15-A22 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. E. Chevreul, The Principles of Harmony and Contrast of Colours, and Their Applications to the Arts (Longman, Brown, Green, and Longmans, 1855).
  2. W. Von Bezold, The Theory of Color in Its Relation to Art and Art-Industry (L. Prang and Company, 1876).
  3. H. Helson, “Studies of anomalous contrast and assimilation,” J. Opt. Soc. Am. 53, 179–184 (1963). [CrossRef]
  4. C. Fach and L. T. Sharpe, “Assimilative hue shifts in color depend on bar width,” Percept. psychophys. 40, 412–418 (1986). [CrossRef]
  5. V. C. Smith, P. Q. Jin, and J. Pokorny, “The role of spatial frequency in color induction,” Vis. Res. 41, 1007–1021 (2001). [CrossRef]
  6. M. White, “A new effect of pattern on perceived lightness,” Perception 8, 413–416 (1979). [CrossRef]
  7. S. Anstis, “White’s effect in lightness, color, and motion,” in Seeing Spatial Form (Oxford University, 2006).
  8. R. Shapley and M. J. Hawken, “Color in the cortex: single-and double-opponent cells,” Vis. Res. 51, 701–717 (2011). [CrossRef]
  9. D. Varin, “Fenomeni di contrasto e diffusione cromatica nell’organizzazione spaziale del campo percettivo, ,” Istituto di psicologia della facoltà di lettere e filosofia dell’università degli studi di Milano, 1971).
  10. H. F. J. M. Van Tuijl, “A new visual illusion: neonlike color spreading and complementary color induction between subjective contours,” Acta Psychologica 39, 441–445 (1975). [CrossRef]
  11. P. Bressan, E. Mingolla, L. Spillmann, and T. Watanabe, “Neon color spreading: a review,” Perception 26, 1353–1366 (1997). [CrossRef]
  12. B. Pinna, “Un effetto di colorazione” in Il Laboratorio e la Città, V. Majer, M. Maeran, and M. Santinello, eds. (XXI Congresso degli Psicologi Italiani, 1987), p. 158.
  13. B. Pinna, G. Brelstaff, and L. Spillmann, “Surface color from boundaries: a new ‘watercolor’ illusion,” Vis. Res. 41, 2669–2676 (2001). [CrossRef]
  14. B. Pinna and S. Grossberg, “The watercolor illusion and neon color spreading: a unified analysis of new cases and neural mechanisms,” J. Opt. Soc. Am. 22, 2207–2221 (2005). [CrossRef]
  15. L. Spillman, B. Pinna, and J. Werner, “Form-from-watercolor in surface perception, and old maps,” in Seeing Spatial Form (Oxford University, 2006).
  16. B. Pinna and G. Mariotti, “Old maps and the watercolor illusion: cartography, vision science, and figure ground segregation principles,” Systemics of Emergence: Research and Development (Springer, 2006), pp. 261–278.
  17. B. Pinna, J. Werner, and L. Spillman, “The watercolor effect: a new principle of grouping and figure ground organization,” Vis. Res. 43, 43–52 (2003). [CrossRef]
  18. R. von der Heydt and R. Pierson, “Dissociation of color and figure-ground effects in the watercolor illusion,” Spatial Vis. 19, 323–340 (2006).
  19. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “The watercolor effect: quantitative evidence for luminance-dependent mechanisms of long-range color assimilation,” Vis. Res. 45, 1413–1424 (2005). [CrossRef]
  20. F. Devinck, J. L. Hardy, P. B. Delahunt, L. Spillmann, and J. S. Werner, “Illusory spreading of watercolor,” J. Vis. 6(5):7, 625–633 (2006). [CrossRef]
  21. B. Cao, A. Yazdanbakhsh, and E. Mingolla, “The effect of contrast intensity and polarity in the achromatic watercolor effect,” J. Vis. 11(3):18, 1–8 (2011). [CrossRef]
  22. F. Devinck, P. B. Delahunt, J. L. Hardy, L. Spillmann, and J. S. Werner, “Spatial dependence of color assimilation by the watercolor effect,” Perception 35, 461–468 (2006). [CrossRef]
  23. D. Cao and S. K. Shevell, “Chromatic assimilation: spread light or neural mechanism?” Vis. Res. 45, 1031–1045 (2005). [CrossRef]
  24. F. Devinck and K. Knoblauch, “A common signal detection model accounts for both perception and discrimination of the watercolor effect,” J. Vis. 12(3):19, 425–428 (2012). [CrossRef]
  25. E. Switkes and M. A. Crognale, “Comparison of color and luminance contrast: apples versus oranges?” Vis. Res. 39, 1823–1831 (1999). [CrossRef]
  26. E. Switkes, “Contrast salience across three-dimensional chromoluminance space,” Vis. Res. 48, 1812–1819 (2008). [CrossRef]
  27. H. A. Jasper, “The ten-twenty electrode system of the International Federation,” Electroencephalogr. Clin. Neurophysiol. 10, 371–375 (1958).
  28. J. V. Odom, M. Bach, M. Brigell, G. E. Holder, D. L. McCulloch, and A. P. Tormene, “ISCEV standard for clinical visual evoked potentials (2009 update),” Documenta Ophthalmologica 120, 111–119 (2010). [CrossRef]
  29. M. A. Crognale, E. Switkes, and A. J. Adams, “Temporal response characteristics of the spatiochromatic visual evoked potential: nonlinearities and departures from psychophysics,” J. Opt. Soc. Am. A 14, 2595–2607 (1997). [CrossRef]
  30. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  31. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  32. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).
  33. J. D. Victor and J. Mast, “A new statistic for steady-state evoked potentials,” Electroencephalogr. Clin. Neurophysiol. 78, 378–388 (1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited