OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A159–A169

Incremental and decremental L- and M-cone-driven ERG responses: I. Square-wave pulse stimulation

Declan McKeefry, Jan Kremers, Deepika Kommanapalli, Naveen K. Challa, Ian J. Murray, John Maguire, and Neil R. A. Parry  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A159-A169 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A159


View Full Text Article

Enhanced HTML    Acrobat PDF (824 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Electroretinograms (ERGs) elicited by transient, square-wave L- and M-cone isolating stimuli were recorded from human trichromatic (n=19) and dichromatic (n=4) observers. The stimuli were generated on a four primary LED stimulator and were equated in terms of cone modulation (cone contrast=0.11) and retinal illuminance (12,000 trolands). L- and M-cone isolated ERGs had waveforms similar to those observed for luminance responses. However, M-cone ERGs exhibited a phase reversal in their responses to onset and offset stimuli relative to the L-cone responses. This on–off response reversal was observed in trichromats but not dichromats. Simultaneous counterphase and inphase combinations of L- and M-cone isolating stimuli generated responses that reflected chromatic and luminance processing, respectively. We conclude that L- and M-cone specific ERGs provide a measure of how photoreceptors contribute to postreceptoral mechanisms.

© 2014 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Retinal and cortical color processing

History
Original Manuscript: September 30, 2013
Revised Manuscript: December 16, 2013
Manuscript Accepted: December 17, 2013
Published: February 4, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Declan McKeefry, Jan Kremers, Deepika Kommanapalli, Naveen K. Challa, Ian J. Murray, John Maguire, and Neil R. A. Parry, "Incremental and decremental L- and M-cone-driven ERG responses: I. Square-wave pulse stimulation," J. Opt. Soc. Am. A 31, A159-A169 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A159


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. A. Bush and P. A. Sieving, “A proximal retinal component in the primate photopic ERG a-wave,” Investig. Ophthalmol. Vis. Sci. 35, 635–645 (1994).
  2. R. A. Bush and P. A. Sieving, “Inner retinal contributions to the primate photopic fast flicker electroretinogram,” J. Opt. Soc. Am. A 13, 557–565 (1996). [CrossRef]
  3. L. J. Frishman, “Origins of the electroretinogram,” in Principles and Practice of Clinical Electrophysiology of Vision, J. R. Heckenlively and G. B. Arden, eds. (MIT, 2006), pp. 139–184.
  4. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram—a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994). [CrossRef]
  5. J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003). [CrossRef]
  6. C. Friedburg, C. P. Allen, P. J. Mason, and T. D. Lamb, “Contribution of cone photoreceptors and post-receptoral mechanisms to the human photopic electroretinogram,” J. Physiol. 556, 819–834 (2004). [CrossRef]
  7. S. Ueno, M. Kondo, M. Ueno, K. Miyata, H. Terasaki, and Y. Miyake, “Contribution of retinal neurons to d-wave of primate photopic electroretinograms,” Vis. Res. 46, 658–664 (2006). [CrossRef]
  8. K. Bradshaw and R. Hanitzsch, “Contribution of post-receporal cells to the cone a-wave of the human electroretinogram in congenital stationary night blindness and autoimmune-like retinopathy,” Vis. Res. 50, 2505–2514 (2010). [CrossRef]
  9. E. D. Adrian, “Rod and cone components in the electric response of the eye,” J. Physiol. 105, 24–37 (1946).
  10. D. V. Norren and P. Padmos, “Human and macaque blue cones studied with electroretinography,” Vis. Res. 13, 1241–1254 (1973). [CrossRef]
  11. L. Mehaffey and E. L. Berson, “Cone mechanisms in electroretinogram of cynomolgus monkey,” Investig. Ophthalmol. 13, 266–273 (1974).
  12. W. S. Baron and R. M. Boynton, “Response of primate cones to sinusoidally flickering homochromatic stimuli,” J. Physiol. 246, 311–331 (1975).
  13. E. Zrenner and P. Gouras, “Blue-sensitive cones of the cat produce a rod like electroretinogram,” Investig. Ophthalmol. Vis. Sci. 18, 1076–1081 (1979).
  14. W. S. Baron, “Cone difference signal in foveal local electroretinogram of primate,” Investig. Ophthalmol. Vis. Sci. 19, 1442–1448 (1980).
  15. W. J. Donovan and W. S. Baron, “Identification of the R-G-cone difference signal in the corneal electroretinogram of the primate,” J. Opt. Soc. Am. 72, 1014–1020 (1982). [CrossRef]
  16. M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol. Vis. Sci. 28, 966–974 (1987).
  17. P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).
  18. P. Gouras, C. J. Mackay, and S. Yamamoto, “The human S-cone electroretinogram and its variation among subjects with and without L-cone and M-cone function,” Investig. Ophthalmol. Vis. Sci. 34, 2437–2442 (1993).
  19. W. Spileers, F. Falcao-Reis, C. Hogg, and G. B. Arden, “Evidence from human electroretinogram-a and off responses that color processing occurs in the cones,” Investig. Ophthalmol. Vis. Sci. 34, 2079–2091 (1993).
  20. G. B. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999). [CrossRef]
  21. J. Kremers, T. Usui, H. P. Scholl, and L. T. Sharpe, “Cone signal contributions to electroretinograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  22. J. Kremers, N. R. Parry, A. Panorgias, and I. J. Murray, “The influence of retinal illuminance on L- and M-cone driven electroretinograms,” Vis. Neurosci. 28, 129–135 (2011). [CrossRef]
  23. J. Albrecht, H. Jägle, D. C. Hood, and L. T. Sharpe, “The multifocal electroretinogram (mfERG) and cone isolating stimuli: variation in L- and M-cone driven signals across the retina,” J. Vis. 2(8), 543–558 (2002).
  24. Z. Chiti, R. V. North, K. E. Mortlock, and N. Drasdo, “The S-cone electroretinogram: a comparison of techniques, normative data and age-related variation,” Ophthalmic Physiol. Opt. 23, 370–376 (2003).
  25. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retin. Eye Res. 22, 579–605 (2003).
  26. I. J. Murray, N. R. Parry, J. Kremers, M. Stepien, and A. Schild, “Photoreceptor topography and cone-specific electroretinograms,” Vis. Neurosci. 21, 231–235 (2004). [CrossRef]
  27. K. E. Mortlock, Z. Chiti, N. Drasdo, D. R. Owens, and R. V. North, “Silent substitution S-cone electroretinogram in subjects with diabetes mellitus,” Ophthalmic Physiol. Opt. 25, 392–399 (2005).
  28. S. Yamamoto, M. Kamiyama, K. Nitta, T. Yamada, and S. Hayasaka, “Selective reduction of the S cone electroretinogram in diabetes,” Br. J. Ophthalmol. 80, 973–975 (1996). [CrossRef]
  29. S. Yamamoto, S. Takeuchi, and M. Kamiyama, “The short wavelength-sensitive cone electroretinogram in diabetes: relationship to systemic factors,” Doc. Ophthalmol. 94, 193–200 (1997–1998). [CrossRef]
  30. N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).
  31. B. Falsini, L. Ziccardi, G. Stifano, G. Iarossi, E. Merendino, A. M. Minnella, A. Fadda, and E. Balestrazzi, “Temporal response properties of the macular cone system: effect of normal aging and age- related maculopathy,” Investig. Ophthalmol. Vis. Sci. 48, 4811–4817 (2007). [CrossRef]
  32. M. Korth and S. Sokol, “Electroretinographic and psychophysical measures of cone spectral mechanisms using the 2-color threshold technique,” Vis. Res. 20, 205–212 (1980). [CrossRef]
  33. G. H. Jacobs, J. Neitz, and K. Krogh, “Electroretinogram flicker photometry and its applications,” J. Opt. Soc. Am. A 13, 641–648 (1996). [CrossRef]
  34. G. H. Jacobs and J. F. Deegan, “Spectral sensitivity of macaque monkeys measured with ERG flicker photometry,” Vis. Neurosci. 14, 921–928 (1997). [CrossRef]
  35. G. H. Jacobs and J. Neitz, “Electrophysiological estimates of individual variation in the L/M cone ratio,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1999) pp. 107–112
  36. D. H. Brainard, A. Roorda, Y. Yamauchi, J. B. Calderone, A. Metha, M. Neitz, J. Neitz, D. R. Williams, and G. H. Jacobs, “Functional consequences of the relative numbers of L and M cones,” J. Opt. Soc. Am. A 17, 607–614 (2000). [CrossRef]
  37. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000). [CrossRef]
  38. J. Carroll, J. Neitz, and M. Neitz, “Estimates of L:M cone ratio from ERG flicker photometry and genetics,” J. Vis. 2(8):1, 531–542 (2002).
  39. N. K. Challa, D. McKeefry, N. R. Parry, J. Kremers, I. J. Murray, and A. Panorgias, “L- and M-cone input to 12  Hz and 30  Hz flicker ERGs across the human retina,” Ophthalmic Physiol. Opt. 30, 503–510 (2010). [CrossRef]
  40. S. Viswanathan, L. J. Frishman, J. G. Robson, R. S. Harwerth, and E. L. Smith, “The photopic negative response of the macaque electroretinogram: reduction by experimental glaucoma,” Investig. Ophthalmol. Vis. Sci. 40, 1124–1136 (1999).
  41. S. Viswanathan, L. J. Frishman, and J. G. Robson, “The uniform field and pattern ERG in macaques with experimental glaucoma: removal of spiking activity,” Investig. Ophthalmol. Vis. Sci. 41, 2797–2810 (2000).
  42. S. Viswanathan, L. J. Frishman, and J. G. Robson, “Inner-retinal contributions to the photopic sinusoidal flicker electroretinogram of macaques: Macaque photopic sinusoidal flicker ERG,” Doc. Ophthalmol. 105, 223–242 (2002). [CrossRef]
  43. J. Kremers and B. Link, “Electroretinographic responses that may reflect activity of parvo- and magnocellular post-receptoral visual pathways,” J. Vis. 8(15):11 (2008). [CrossRef]
  44. H. Wassle, “Parallel processing in the mammalian retina,” Nat. Rev. Neurosci. 5, 747–757 (2004). [CrossRef]
  45. T. P. Hicks, B. B. Lee, and T. R. Vidyasagar, “The response of cells in macaque lateral geniculate nucleus to sinusoidal gratings,” J. Physiol. 337, 183–200 (1983).
  46. B. Dreher, Y. Fukada, and R. W. Rodieck, “Identification, classification and anatomical segregation of cells with X-like and Y-like properties in the lateral geniculate nucleus of old-world primates,” J. Physiol. 258, 433–452 (1976).
  47. A. M. Derrington and P. Lennie, “Spatial and temporal contrast sensitivities of neurons in lateral geniculate nucleus of macaque,” J. Physiol. 357, 219–240 (1984).
  48. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  49. R. Shapley and V. H. Perry, “Cat and monkey retinal ganglion cells and their visual functional roles,” Trends Neurosci. 9, 229–235 (1986). [CrossRef]
  50. B. B. Lee, A. Valberg, D. A. Tigwell, and J. Tryti, “An account of responses of spectrally opponent neurons in macaque lateral geniculate nucleus to successive contrast,” Proc. R. Soc. Lond. B 230, 293–314 (1987). [CrossRef]
  51. B. B. Lee, P. R. Martin, and A. Valberg, “Sensitivity of macaque retinal ganglion cells to chromatic and luminance flicker,” J. Physiol. 414, 223–243 (1989).
  52. F. M. De Monasterio and P. Gouras, “Functional properites of ganglion cells of the rhesus monkey retina,” J. Physiol. 251, 167–195 (1975).
  53. P. H. Schiller, N. K. Logothetis, and E. R. Charles, “Functions of the colour-opponent and broad-band channels of the visual system,” Nature 343, 68–70 (1990). [CrossRef]
  54. D. M. Dacey, “Parallel pathways for spectral coding in primate retina,” Annu. Rev. Neurosci. 23, 743–775 (2000). [CrossRef]
  55. D. M. Dacey and B. B. Lee, “The blue-on opponent pathway in primate retina originates from a distinct bistratified ganglion-cell type,” Nature 367, 731–735 (1994). [CrossRef]
  56. T. N. Wiesel and D. H. Hubel, “Spatial and chromatic interactions in the lateral geniculate body of the rhesus monkey,” J. Neurophysiol. 29, 1115–1156 (1966).
  57. B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of heterochromatic flicker photometry demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 404, 323–347 (1988).
  58. P. K. Kaiser, B. B. Lee, P. R. Martin, and A. Valberg, “The physiological basis of the minimally distinct border demonstrated in the ganglion cells of the macaque retina,” J. Physiol. 422, 153–183 (1990).
  59. A. Valberg, B. B. Lee, P. K. Kaiser, and J. Kremers, “Responses of macaque ganglion-cells to movement of chromatic borders,” J. Physiol. 458, 579–602 (1992).
  60. J. Kremers, A. R. Rodrigues, L. C. Silveria, and M. da Silva Filho, “Flicker ERGs representing chromaticity and luminance Signals,” Investig. Ophthalmol. Vis. Sci. 51, 577–587 (2010). [CrossRef]
  61. N. R. Parry, I. J. Murray, A. Panorgias, D. J. McKeefry, B. B. Lee, and J. Kremers, “Simultaneous chromatic and luminance human electroretinogram responses,” J. Physiol. 590, 3141–3154 (2012). [CrossRef]
  62. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Flicker cone electroretinogram in dichromats and trichromats,” Vis. Res. 38, 3391–3396 (1998). [CrossRef]
  63. T. Usui, J. Kremers, L. T. Sharpe, and E. Zrenner, “Response phase of the flicker electroretinogram (ERG) is influenced by cone excitation strength,” Vis. Res. 38, 3247–3251 (1998). [CrossRef]
  64. O. Estévez and H. Spekreijse, “Spectral compensation method for determining flicker characteristics of human color mechanisms,” Vis. Res. 14, 823–830 (1974). [CrossRef]
  65. O. Estévez and H. Spekreijse, “The “silent substitution” method in visual research,” Vis. Res. 22, 681–691 (1982). [CrossRef]
  66. A. G. Shapiro, J. Pokorny, and V. C. Smith, “Cone-rod receptor spaces with illustrations that use CRT phosphor and light-emitting-diode spectra,” J. Opt. Soc. Am. A 13, 2319–2328 (1996). [CrossRef]
  67. H. Sun, J. Pokorny, and V. C. Smith, “Control of the modulation of human photoreceptors,” Color Res. Appl. 26, S69–S75 (2001).
  68. A. Stockman, D. I. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2521 (1993). [CrossRef]
  69. R. L. DeValois, N. P. Cottaris, S. D. Elfar, L. E. Mahon, and J. A. Wilson, “Some transformations of color information from lateral geniculate nucleus to striate cortex,” Proc. Natl. Acad. Sci. USA 97, 4997–5002 (2000). [CrossRef]
  70. R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of the response patterns of LGN cells,” J. Opt. Soc. Am. 56, 966–977 (1966). [CrossRef]
  71. P. V. McGraw, D. J. McKeefry, D. Whitaker, and C. Vakrou, “Positional adaptation reveals multiple chromatic mechanisms in human vision,” J. Vis. 4(7):8, 626–636 (2004). [CrossRef]
  72. D. H. Kelly and D. van Norren, “Two-band model of heterochromatic flicker,” J. Opt. Soc. Am. 67, 1081–1091 (1977). [CrossRef]
  73. V. C. Smith, J. Pokorny, M. Davis, and T. Yeh, “Mechanisms subserving temporal-modulation sensitivity in silent-cone substitution,” J. Opt. Soc. Am. A 12, 241–249 (1995). [CrossRef]
  74. V. C. Smith, B. B. Lee, J. Pokorny, P. R. Martin, and A. Valberg, “Responses of macaque ganglion-cells to the relative phase of heterochromatically modulated lights,” J. Physiol. 458, 191–221 (1992).
  75. D. M. Dacey, “Primate retina: cell types, circuits and colour opponency,” Prog. Retin. Eye Res. 18, 737–763 (1999). [CrossRef]
  76. J. Verweij, E. P. Hornstein, and J. L. Schnapf, “Surround antagonism in macaque photoreceptors,” J. Neurosci. 23, 10249–10257 (2003).
  77. H. U. Evers and P. Gouras, “Three cone mechanisms in the primate electroretinogram—two with, one without off-center bipolar responses,” Vis. Res. 26, 245–254 (1986). [CrossRef]
  78. W. Li and S. H. DeVries, “Bipolar cell pathways for color and luminance vision in a dichromatic mammalian retina,” Nat. Neurosci. 9, 669–675 (2006). [CrossRef]
  79. T. Breuninger, C. Puller, S. Havercamp, and T. Euler, “Chromatic bipolar cell pathways in the mouse retina,” J. Neurosci. 31, 6504–6517 (2011). [CrossRef]
  80. D. Dacey, O. S. Packer, L. Diller, D. Brainard, B. Peterson, and B. B. Lee, “Center surround receptive field structure of cone bipolar cells in primate retina,” Vis. Res. 40, 1801–1811 (2000). [CrossRef]
  81. B. Erikoz, P. R. Jusuf, K. A. Percival, and U. Grünert, “Distribution of bipolar input to midget and parasol ganglion cells in marmoset retina,” Vis. Neurosci. 25, 67–76 (2008). [CrossRef]
  82. S. S. Deeb, L. C. Diller, D. R. Williams, and D. M. Dacey, “Interindividual and topographical variation of L∶M cone ratios in monkey retinas,” J. Opt. Soc. Am. A 17, 538–544 (2000). [CrossRef]
  83. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001). [CrossRef]
  84. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  85. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited