OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A208–A213

Cone-isolating ON–OFF electroretinogram for studying chromatic pathways in the retina

James A. Kuchenbecker, Scott H. Greenwald, Maureen Neitz, and Jay Neitz  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A208-A213 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (489 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The electroretinogram (ERG) provides information about outer retina function in both clinical and research applications. ERG components elicited by light increments and decrements can be separated using a long-flash paradigm in which periods of light ON and OFF are alternated. Here, the ON–OFF ERG is combined with a silent substitution technique to elicit responses from individual cone photoreceptor classes by modulating the intensities of three color lights between the two periods. The results focus on the short wavelength (S) cone pathways since they are vulnerable to disease and because there are many unanswered questions about S-cone ON and OFF circuitry.

© 2014 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.4270) Vision, color, and visual optics : Vision system neurophysiology
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5310) Vision, color, and visual optics : Vision - photoreceptors

ToC Category:
Retinal and cortical color processing

Original Manuscript: October 3, 2013
Revised Manuscript: December 12, 2013
Manuscript Accepted: December 21, 2013
Published: February 12, 2014

James A. Kuchenbecker, Scott H. Greenwald, Maureen Neitz, and Jay Neitz, "Cone-isolating ON–OFF electroretinogram for studying chromatic pathways in the retina," J. Opt. Soc. Am. A 31, A208-A213 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Kremers, T. Usui, H. P. N. Scholl, and L. T. Sharpe, “Cone signal contributions to electrograms in dichromats and trichromats,” Investig. Ophthalmol. Vis. Sci. 40, 920–930 (1999).
  2. D. H. Brainard, J. B. Calderone, A. K. Nugent, and G. H. Jacobs, “Flicker ERG responses to stimuli parametrically modulated in color space,” Investig. Ophthalmol. Vis. Sci. 40, 2840–2847 (1999).
  3. J. Kremers, “The assessment of L- and M-cone specific electroretinographical signals in the normal and abnormal human retina,” Prog. Retinal Eye Res. 22, 579–605 (2003). [CrossRef]
  4. K. Klug, S. Herr, I. Ngo, P. Sterling, and S. J. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 39, 9881–9887 (2003).
  5. S. C. S. Lee, I. Telkes, and U. Grunert, “S-cones do not contribute to the OFF-midget pathway in the retina of the marmoset, Callithrix jacchus,” Eur. J. Neurosci. 22, 437–447 (2005). [CrossRef]
  6. P. Gouras and C. J. Mackay, “Electroretinographic responses of the short-wavelength-sensitive cones,” Investig. Ophthalmol. Vis. Sci. 31, 1203–1209 (1990).
  7. M. Crognale, G. H. Jacobs, and J. Neitz, “Flicker photometric measurements of short wavelength sensitive cones,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Kluwer Academic, 1991), pp. 341–346.
  8. G. Arden, J. Wolf, T. Berninger, C. R. Hogg, R. Tzekov, and G. E. Holder, “S-cone ERGs elicited by a simple technique in normals and in tritanopes,” Vis. Res. 39, 641–650 (1999). [CrossRef]
  9. M. Sawusch, J. Pokorny, and V. C. Smith, “Clinical electroretinography for short wavelength sensitive cones,” Investig. Ophthalmol Vis. Sci. 28, 966–974 (1987).
  10. N. Drasdo, Y. H. Aldebasi, Z. Chiti, K. E. Mortlock, J. E. Morgan, and R. V. North, “The S-cone PhNR and pattern ERG in primary open angle glaucoma,” Investig. Ophthalmol. Vis. Sci. 42, 1266–1272 (2001).
  11. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  12. J. Carroll, C. McMahon, M. Neitz, and J. Neitz, “Flicker-photometric electroretinogram estimates of L: M cone photoreceptor ratio in men with photopigment spectra derived from genetics,” J. Opt. Soc. Am. A 17, 499–509 (2000). [CrossRef]
  13. O. Estévez and H. Spekreijse, “The ‘silent substitution’ method in visual research,” Vis. Res. 22, 681–691 (1982). [CrossRef]
  14. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987). [CrossRef]
  15. A. Stockman, D. I. A. MacLeod, and N. E. Johnson, “Spectral sensitivities of the human cones,” J. Opt. Soc. Am. A 10, 2491–2520 (1993). [CrossRef]
  16. T. W. Kraft, J. Neitz, and M. Neitz, “Spectra of human L cones,” Vis. Res. 38, 3663–3670 (1998). [CrossRef]
  17. A. Stockman, L. Sharpe, and C. Fach, “The spectral sensitivity of the human short-wavelength cones,” Vis. Res. 39, 2901–2927 (1999). [CrossRef]
  18. A. Stockman and L. Sharpe, “Spectral sensitivities of the middle- and long-wavelength sensitive cones derived from measurements in observers of known genotype,” Vis. Res. 40, 1711–1737 (2000). [CrossRef]
  19. A. Stockman, L. T. Sharpe, S. Merbs, and J. Nathans, “Spectral sensitivities of human cone visual pigments determined in vivo and in vitro,” Methods Enzymol. 316, 626–650 (2000). [CrossRef]
  20. J. L. Schnapf, T. W. Kraft, and D. A. Baylor, “Spectral sensitivity of human cone photoreceptors,” Nature 325, 439–441 (1987). [CrossRef]
  21. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
  22. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  23. D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1998).
  24. S. Herr, K. Klug, P. Sterling, and S. J. Schein, “Inner S-cone bipolar cells provide all of the central elements for s cones in macaque retina,” J. Comp. Neurol. 457, 185–201 (2003). [CrossRef]
  25. S. Haverkamp, H. Wassle, J. Duebel, T. Kuner, G. J. Augustine, G. Feng, and T. Euler, “The primordial, blue-cone color system of the mouse retina,” J. Neurosci. 25, 5438–5445 (2005). [CrossRef]
  26. P. A. Sieving, K. Murayama, and F. Naarendorp, “Push-pull model of the primate photopic electroretinogram: a role for hyperpolarizing neurons in shaping the b-wave,” Vis. Neurosci. 11, 519–532 (1994). [CrossRef]
  27. J. G. Robson, S. M. Saszik, J. Ahmed, and L. J. Frishman, “Rod and cone contributions to the a-wave of the electroretinogram of the macaque,” J. Physiol. 547, 509–530 (2003). [CrossRef]
  28. D. R. Copenhagen, J. F. Ashmore, and J. K. Schnapf, “Kinetics of synaptic transmission from photoreceptors to horizontal and bipolar cells in turtle retina,” Vis. Res. 23, 363–369 (1983). [CrossRef]
  29. D. A. Burkhardt, “Contrast processing by ON and OFF bipolar cells,” Vis. Neurosci. 28, 69–75 (2011). [CrossRef]
  30. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Syntaxin-4 is highly enriched beneath S-cone pedicles in the primate retina,” Investig. Ophthalmol. Vis. Sci. 53, ARVO abstract, 6323 (2012).
  31. C. Puller, M. B. Manookin, M. Neitz, and J. Neitz, “Specialized synaptic pathway for chromatic signals beneath S-cone photoreceptors is common to human, Old and New World primates,” J. Opt. Soc. Am. A 31, A189–A194 (2014).
  32. J. Neitz, M. Neitz, and C. Puller, Department of Ophthalmology, University of Washington, Seattle, Washington 98109, USA, are preparing a manuscript to be called “Synaptic elements for GABAergic feed-forward signaling between HII horizontal cells and blue cone bipolar cells are enriched beneath primate S-cones.”

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited