OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A226–A231

Counterphase modulation flicker photometry: phenotypic and genotypic associations

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A226-A231 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (322 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The OSCAR test, a clinical device that uses counterphase flicker photometry, is believed to be sensitive to the relative numbers of long-wavelength and middle-wavelength cones in the retina, as well as to individual variations in the spectral positions of the photopigments. As part of a population study of individual variations in perception, we obtained OSCAR settings from 1058 participants. We report the distribution characteristics for this cohort. A randomly selected subset of participants was tested twice at an interval of at least one week: the test–retest reliability (Spearman’s rho) was 0.80. In a whole-genome association analysis we found a provisional association with a single nucleotide polymorphism (rs16844995). This marker is close to the gene RXRG, which encodes a nuclear receptor, retinoid X receptor γ. This nuclear receptor is already known to have a role in the differentiation of cones during the development of the eye, and we suggest that polymorphisms in or close to RXRG influence the relative probability with which long-wave and middle-wave opsin genes are expressed in human cones.

© 2014 Optical Society of America

OCIS Codes
(330.4460) Vision, color, and visual optics : Ophthalmic optics and devices
(330.7310) Vision, color, and visual optics : Vision

ToC Category:
Variations and deficiencies of color vision

Original Manuscript: October 3, 2013
Revised Manuscript: December 15, 2013
Manuscript Accepted: December 16, 2013
Published: February 12, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, "Counterphase modulation flicker photometry: phenotypic and genotypic associations," J. Opt. Soc. Am. A 31, A226-A231 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Hl. de Vries, “The heredity of the relative numbers of red and green receptors in the human eye,” Genetica 24, 199–212 (1948).
  2. Hl. de Vries, “An extension of Helmholtz’s theory of colorvision,” in Réunions d’Opticiens tenue à Paris en Octobre 1946, P. Fleury, A. Maréchal, and C. Anglade, eds. (Éditions de la Revue D’Optique, 1950), pp. 361–370.
  3. W. A. H. Rushton and H. D. Baker, “Red-green sensitivity in normal vision,” Vis. Res. 4, 75–85 (1964). [CrossRef]
  4. Hl. de Vries, “Luminosity curve of trichromats,” Nature 157, 736–737 (1946). [CrossRef]
  5. J. Kremers, H. P. N. Scholl, H. Knau, T. T. J. M. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000). [CrossRef]
  6. R. M. Boynton, Human Color Vision (Holt, Rinehart & Winston, 1979).
  7. M. Lutze, N. J. Cox, V. C. Smith, and J. Pokorny, “Genetic-studies of variation in Rayleigh and photometric matches in normal trichromats,” Vis. Res. 30, 149–162 (1990). [CrossRef]
  8. M. Alpern and J. Moeller, “The red and green cone visual pigments of deuteranomalous trichromacy,” J. Physiol. 266, 647–675 (1977).
  9. H. J. A. Dartnall, J. K. Bowmaker, and J. D. Mollon, “Human visual pigments: microspectrophotometric results from the eyes of seven persons,” Proc. R. Soc. B 220, 115–130 (1983).
  10. J. Winderickx, D. T. Lindsay, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992). [CrossRef]
  11. S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992). [CrossRef]
  12. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998). [CrossRef]
  13. G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII (Springer, 1997), pp. 385–392.
  14. O. Estévez, H. Spekreijse, J. T. W. van Dalen, and H. F. E. Verduyn Lunel, “The Oscar color vision test: theory and evaluation (objective screening of color anomalies and reductions),” Am. J. Optom. Physiolog. Opt. 60, 892–901 (1983).
  15. H. Le Sueur, J. D. Mollon, J. Granzier, and G. Jordan, “Counterphase modulation photometry: comparison of two instruments,” J. Opt. Soc. Am. A 31, A34–A37 (2014). [CrossRef]
  16. A. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992). [CrossRef]
  17. J. D. Mollon, “On the origins of polymorphisms,” in Frontiers of Visual Science: Proceedings of the 1985 Symposium (National Academy, 1987), pp. 160–168.
  18. M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L∶M cone ratio?” Vis. Res. 78, 26–38 (2013). [CrossRef]
  19. M. F. Lyon, “Gene action in the X-chromosome of mouse (Mus Musculus L),” Nature 190, 372–373 (1961). [CrossRef]
  20. S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006). [CrossRef]
  21. Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999).
  22. S. S. Deeb, M. Dorschner, A. Shafer, T. Kutyavin, and J. Stamatoyannopolous, “Novel regulatory regions of the human L/M photopigment gene locus,” Investig. Ophthalmol. Vis. Sci. 45, E-Abstract 654 (2004).
  23. S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006). [CrossRef]
  24. K. L. Gunther, J. Neitz, and M. Neitz, “Nucleotide polymorphisms upstream of the X-chromosome opsin gene array tune L∶M cone ratio,” Vis. Neurosci. 25, 265–271 (2008). [CrossRef]
  25. P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different “magnocellular tasks” probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012). [CrossRef]
  26. A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013). [CrossRef]
  27. P. T. Goodbourn, J. M. Bosten, G. Bargary, R. E. Hogg, A. Lawrance-Owen, and J. D. Mollon, “Variants in the 1q21 risk region are associated with a visual endophenotype of autism and schizophrenia,” Genes Brain Behav., doi: 10.1111/gbb.12096 (in press). [CrossRef]
  28. J. Birch, Diagnosis of Defective Colour Vision (Oxford University, 1993).
  29. R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
  30. A. Adam, “Foveal red-green ratios of normals, colourblinds and heterozygotes,” in Proceedings of the Tel-Hashomer Hospital (Tel-Aviv, 1969), pp. 2–6.
  31. J. François, G. Verriest, V. Mortier, and R. Vanderdonck, “Over de frekwentie der aangeboren kleurzin-deficienties bij de mannelijke bevolking,” Nederlands Tijdschrift voor de Psychologie 12, 24–37 (1957).
  32. O. Vierling, Die Farbensinnprüfung bei der Deutschen Reichsbahn (Melsungen, 1935).
  33. J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).
  34. R. Lakowski, “Theory and practice of colour vision testing: a review. Part 2,” Brit. J. Indust. Med. 26, 265–288 (1969).
  35. J. D. Mollon, ““Cherries among the leaves”: the evolutionary origins of color vision,” in Color Perception: Philosophical, Psychological, Artistic and Computational Perspectives, S. Davis, ed. (Oxford University, 2000), pp. 10–30.
  36. D. M. Dacey, “Colour coding in the primate retina: diverse cell types and cone-specific circuitry,” Curr. Opin. Neurobiol. 13, 421–427 (2003). [CrossRef]
  37. G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993). [CrossRef]
  38. S. J. Belcher, K. W. Greenshields, and W. D. Wright, “Colour vision survey using the Ishihara, Dvorine, Boström and Kugelberg, and American Optical Hardy-Rand-Rittler test,” Brit. J. Ophthalmol. 42, 355–359 (1958).
  39. R. Lakowski, “Colorimetric and photometric data for the 10th edition of the Ishihara plates,” Brit. J. Physiolog. Opt. 22, 195–207 (1965).
  40. M. X. Li, J. M. Y. Yeung, S. S. Cherny, and P. C. Sham, “Evaluating the effective numbers of independent tests and significant p-value thresholds in commercial genotyping arrays and public imputation reference datasets,” Hum. Genet. 131, 747–756 (2012). [CrossRef]
  41. M. I. Dawson and Z. Xia, “The retinoid X receptors and their ligands,” Biochim. Biophys. Acta 1821, 21–56 (2012). [CrossRef]
  42. A. Onishi, G. H. Peng, S. M. Chen, and S. Blackshaw, “Pias3-dependent SUMOylation controls mammalian cone photoreceptor differentiation,” Nat. Neurosci. 13, 1059–1065 (2010). [CrossRef]
  43. A. Swaroop, D. Kim, and D. Forrest, “Transcriptional regulation of photoreceptor development and homeostasis in the mammalian retina,” Nat. Rev. Neurosci. 11, 563–576 (2010). [CrossRef]
  44. L. Ng, J. B. Hurley, B. Dierks, M. Srinivas, C. Salto, B. Vennstrom, T. A. Reh, and D. Forrest, “A thyroid hormone receptor that is required for the development of green cone photoreceptors,” Nat. Genet. 27, 94–98 (2001).
  45. D. Forrest and A. Swaroop, “Minireview: the role of nuclear receptors in photoreceptor differentiation and disease,” Mol. Endocrinol. 26, 905–915 (2012).
  46. S. S. Deeb and Y. Liu, “Thyroid hormone and 9—cis retinoic acid transcriptionally activate the human L/M cone opsin genes,” Investig. Ophthalmol. Vis. Sci. 46, E-Abstract 3074 (2005). [CrossRef]
  47. F. Hoover, E. A. Seleiro, A. Kielland, P. M. Brickell, and J. C. Glover, “Retinoid X receptor gamma gene transcripts are expressed by a subset of early generated retinal cells and eventually restricted to photoreceptors,” J. Comp. Neurol. 391, 204–213 (1998). [CrossRef]
  48. M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005). [CrossRef]
  49. M. Mori, N. B. Ghyselinck, P. Chambon, and M. Mark, “Systematic immunolocalization of retinoid receptors in developing and adult mouse eyes,” Investig. Ophthalmol. Vis. Sci. 42, 1312–1318 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited