OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A293–A302

Non-cardinal color mechanism strength differs across color planes but not across subjects

Karen L. Gunther  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A293-A302 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (665 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



This study tested two hypotheses: (1) that non-cardinal color mechanisms may be due to individual differences: some subjects have them (or have stronger ones), while other subjects do not; and (2) that non-cardinal mechanisms may be stronger in the isoluminant plane of color space than in the two planes with luminance. Five to six subjects per color plane were tested on three psychophysical paradigms: adaptation, noise masking, and plaid coherence. There were no consistent individual differences in non-cardinal mechanism strength across the three paradigms. In group-averaged data, non-cardinal mechanisms appear to be weaker in the two planes with luminance than in the isoluminant plane.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7320) Vision, color, and visual optics : Vision adaptation

ToC Category:
Color sensitivity and appearance

Original Manuscript: September 5, 2013
Revised Manuscript: December 20, 2013
Manuscript Accepted: January 13, 2014
Published: February 25, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Karen L. Gunther, "Non-cardinal color mechanism strength differs across color planes but not across subjects," J. Opt. Soc. Am. A 31, A293-A302 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  2. R. L. DeValois, I. Abramov, and G. H. Jacobs, “Analysis of response patterns of LGN cells,” J. Opt. Soc. Am. A 56, 966–977 (1966).
  3. H. Kolb, “Anatomical pathways for color vision in the human retina,” Vis. Neurosci. 7, 61–74 (1991). [CrossRef]
  4. E. Kaplan, B. B. Lee, and R. M. Shapley, “New views of primate retinal function,” Prog. Retin. Res. 9, 273–336 (1990). [CrossRef]
  5. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  6. K. L. Gunther, “Non-cardinal color perception across the retina: easy for orange, hard for burgundy and sky blue,” J. Opt. Soc. Am. A 31, A274–A282 (2014). [CrossRef]
  7. P. Lennie, J. Krauskopf, and G. Sclar, “Chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 10, 649–669 (1990).
  8. C. Tailby, S. G. Solomon, N. T. Dhruv, and P. Lennie, “Habituation reveals fundamental chromatic mechanisms in striate cortex of macaque,” J. Neurosci. 28, 1131–1139 (2008). [CrossRef]
  9. D. C. Kiper, S. B. Fenstemaker, and K. R. Gegenfurtner, “Chromatic properties of neurons in macaque area V2,” Vis. Neurosci. 14, 1061–1072 (1997). [CrossRef]
  10. G. J. Brouwer and D. J. Heeger, “Decoding and reconstructing color from responses in human visual cortex,” J. Neurosci. 29, 13992–14003 (2009). [CrossRef]
  11. L. M. Parkes, J. B. Marsman, D. C. Oxley, J. Y. Goulermas, and S. M. Wuerger, “Multivoxel fMRI analysis of color tuning in human primary visual cortex,” J. Vis. 9(1):1 (2009). [CrossRef]
  12. B. R. Conway, S. Moeller, and D. Y. Tsao, “Specialized color modules in macaque extrastriate cortex,” Neuron 56, 560–573 (2007). [CrossRef]
  13. J. Krauskopf and K. Gegenfurtner, “Color discrimination and adaptation,” Vis. Res. 32, 2165–2175 (1992). [CrossRef]
  14. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res 22, 1123–1131 (1982). [CrossRef]
  15. J. Krauskopf, D. R. Williams, M. B. Mandler, and A. M. Brown, “Higher order color mechanisms,” Vis. Res 26, 23–32 (1986). [CrossRef]
  16. Y. Mizokami, C. Paras, and M. A. Webster, “Chromatic and contrast selectivity in color contrast adaptation,” Vis. Neurosci. 21, 359–363 (2004). [CrossRef]
  17. M. A. Webster and J. D. Mollon, “The influence of contrast adaptation on color appearance,” Vis. Res. 34, 1993–2020 (1994). [CrossRef]
  18. M. A. Webster and J. D. Mollon, “Changes in colour appearance following post-receptoral adaptation,” Nature 349, 235–238 (1991). [CrossRef]
  19. C. M. Stoughton, R. Lafer-Sousa, G. Gagin, and B. R. Conway, “Psychophysical chromatic mechanisms in macaque monkey,” J. Neurosci. 32, 15216–15226 (2012). [CrossRef]
  20. K. L. Gunther and K. R. Dobkins, “Independence of mechanisms tuned along cardinal and non-cardinal axes of color space: evidence from factor analysis,” Vis. Res. 43, 683–696 (2003). [CrossRef]
  21. M. D’Zmura and K. Knoblauch, “Spectral bandwidths for the detection of color,” Vis. Res. 38, 3117–3128 (1998). [CrossRef]
  22. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992). [CrossRef]
  23. F. Giulianini and R. T. Eskew, “Chromatic masking in the (delta L/L, delta M/M) plane of cone-contrast space reveals only two detection mechanisms,” Vis. Res. 38, 3913–3926 (1998). [CrossRef]
  24. T. Hansen and K. R. Gegenfurtner, “Higher level chromatic mechanisms for image segmentation,” J. Vis. 6(3):5 (2006). [CrossRef]
  25. A. Li and P. Lennie, “Mechanisms underlying segmentation of colored textures,” Vis. Res. 37, 83–97 (1997). [CrossRef]
  26. M. J. Sankeralli and K. T. Mullen, “Postreceptoral chromatic detection mechanisms revealed by noise masking in three-dimensional cone contrast space,” J. Opt. Soc. Am. A 14, 2633–2646 (1997). [CrossRef]
  27. T. Hansen and K. R. Gegenfurtner, “Higher order color mechanisms: evidence from noise-masking experiments in cone contrast space,” J. Vis. 13(1):26 (2013). [CrossRef]
  28. K. R. Dobkins, G. R. Stoner, and T. D. Albright, “Perceptual, oculomotor, and neural responses to moving color plaids,” Perception 27, 681–709 (1998). [CrossRef]
  29. F. L. Kooi, K. K. De Valois, E. Switkes, and D. H. Grosof, “Higher-order factors influencing the perception of sliding and coherence of a plaid,” Perception 21, 583–598 (1992). [CrossRef]
  30. J. Krauskopf, H. J. Wu, and B. Farell, “Coherence, cardinal directions and higher-order mechanisms,” Vis. Res. 36, 1235–1245 (1996). [CrossRef]
  31. M. D’Zmura, “Color in visual search,” Vis. Res. 31, 951–966 (1991). [CrossRef]
  32. P. Monnier and A. L. Nagy, “Uncertainty, attentional capacity and chromatic mechanisms in visual search,” Vis. Res. 41, 313–328 (2001). [CrossRef]
  33. R. T. Eskew, “Higher order color mechanisms: a critical review,” Vis. Res. 49, 2686–2704 (2009). [CrossRef]
  34. R. T. Eskew, J. R. Newton, and F. Giulianini, “Chromatic detection and discrimination analyzed by a Bayesian classifier,” Vis. Res. 41, 893–909 (2001). [CrossRef]
  35. P. Flanagan, P. Cavanagh, and O. E. Favreau, “Independent orientation-selective mechanisms for the cardinal directions of colour space,” Vis. Res. 30, 769–778 (1990). [CrossRef]
  36. M. Giesel, T. Hansen, and K. R. Gegenfurtner, “The discrimination of chromatic textures,” J. Vis. 9(9):11 (2009). [CrossRef]
  37. N. Goda and M. Fujii, “Sensitivity to modulation of color distribution in multicolored textures,” Vis. Res. 41, 2475–2485 (2001). [CrossRef]
  38. A. L. Nagy, K. E. Neriani, and T. L. Young, “Color mechanisms used in selecting stimuli for attention and making discriminations,” Vis. Neurosci. 21, 295–299 (2004). [CrossRef]
  39. Q. Zaidi and D. Halevy, “Visual mechanisms that signal the direction of color changes,” Vis. Res. 33, 1037–1051 (1993). [CrossRef]
  40. T. Sato, T. Nagai, and S. Nakauchi, “Individual differences in higher-order chromatic mechanisms measured with classification image technique,” in International Color Vision Society, Kongsberg, Norway (2011).
  41. V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
  42. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998). [CrossRef]
  43. J. Kremers, H. P. Scholl, H. Knau, T. T. Berendschot, T. Usui, and L. T. Sharpe, “L/M cone ratios in human trichromats assessed by psychophysics, electroretinography, and retinal densitometry,” J. Opt. Soc. Am. A 17, 517–526 (2000). [CrossRef]
  44. R. L. Vimal, J. Pokorny, V. C. Smith, and S. K. Shevell, “Foveal cone thresholds,” Vis. Res. 29, 61–78 (1989). [CrossRef]
  45. R. A. Bone, J. T. Landrum, and A. Cains, “Optical density spectra of the macular pigment in vivo and in vitro,” Vis. Res. 32, 105–110 (1992). [CrossRef]
  46. B. R. Wooten and B. R. Hammond, “Spectral absorbance and spatial distribution of macular pigment using heterochromatic flicker photometry,” Optom. Vis. Sci. 82, 378–386 (2005). [CrossRef]
  47. R. Shapley and M. J. Hawken, “Color in the cortex: single- and double-opponent cells,” Vis. Res. 51, 701–717 (2011). [CrossRef]
  48. K. R. Dobkins, K. L. Gunther, and D. H. Peterzell, “What covariance mechanisms underlie green/red equiluminance, luminance contrast sensitivity and chromatic (green/red) contrast sensitivity?” Vis. Res. 40, 613–628 (2000). [CrossRef]
  49. D. I. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. 69, 1183–1186 (1979). [CrossRef]
  50. J. Krauskopf, “Higher order color mechanisms,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and T. Sharpe, eds. (Cambridge University, 1999), pp. 304–316.
  51. T. Hansen, L. Pracejus, and K. R. Gegenfurtner, “Color perception in the intermediate periphery of the visual field,” J. Vis. 9(4):26 (2009). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited