OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A375–A384

Variation of color discrimination across the life span

Galina V. Paramei and Beata Oakley  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A375-A384 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (652 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The present study, an extension of Paramei [J. Opt. Soc. Am. A, 29, A290, 2012], provides normative data on chromatic discrimination, using the Cambridge Colour Test, for normal trichromats aged 10–88 years. Findings are in accord with a two-phase variation across the life span: chromatic sensitivity improves in adolescence, reaches a maximum around 30 years, and then undergoes a gradual decrease. Indicative parameters are Protan (P), Deutan (D), and Tritan (T) vector lengths and major axes and axis ratios of Ellipses. Trivector data are modeled as non-monotonic combinations of power functions, with goodness-of-fits RP2=0.23, RD2=0.23, and RT2=0.45. For advancing age, sensitivity decline in all chromatic systems was confirmed, though with a marked acceleration after 60 years (reflected by the power function exponent >1) and more pronounced for the tritan system.

© 2014 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.4300) Vision, color, and visual optics : Vision system - noninvasive assessment
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5510) Vision, color, and visual optics : Psychophysics
(330.7323) Vision, color, and visual optics : Visual optics, aging changes

ToC Category:
Chromatic discrimination

Original Manuscript: October 7, 2013
Revised Manuscript: January 2, 2014
Manuscript Accepted: January 4, 2014
Published: March 6, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Galina V. Paramei and Beata Oakley, "Variation of color discrimination across the life span," J. Opt. Soc. Am. A 31, A375-A384 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Verriest, J. Van Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth-Munsell 100-hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
  2. G. Verriest, “Further studies on acquired deficiency of color discrimination,” J. Opt. Soc. Am. 53, 185–195 (1963). [CrossRef]
  3. K. J. Bowman, M. J. Collins, and C. J. Henry, “The effect of age on performance on the Panel D-15 and Desaturated D-15: a quantitative evaluation,” Doc. Ophthalmol. Proc. 39, 227–231 (1984). [CrossRef]
  4. K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001). [CrossRef]
  5. P. R. Kinnear and A. Sahraie, “New Farnsworth-Munsell 100 hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Brit. J. Ophthalmol. 86, 1408–1411 (2002). [CrossRef]
  6. D. F. Ventura, A. R. Rodrigues, A. A. Moura, A. C. Vargas, M. F. Costa, J. M. de Souza, and L. L. Silveira, “Color discrimination measured by the Cambridge Colour Vision Test (CCVT) in children and adults,” Invest. Ophthalmol. Vis. Sci. 43, E-Abstract 3796 (2002).
  7. P. R. K. Goulart, M. L. Bandeira, D. Tsubota, N. N. Oiwa, M. F. Costa, and D. F. Ventura, “A computer-controlled color vision test for children based on the Cambridge Colour Test,” Vis. Neurosci. 25, 1–6 (2008). [CrossRef]
  8. J. S. Werner, D. H. Peterzell, and A. J. Scheetz, “Light, vision, and aging,” Optom. Vis. Sci. 67, 214–229 (1990). [CrossRef]
  9. G. Hagerstrom-Portnoy, M. E. Schneck, and J. A. Brabyn, “Seeing into old age: vision function beyond acuity,” Optom. Vis. Sci. 76, 141–158 (1999). [CrossRef]
  10. J. S. Werner, “Visual problems of the retina during ageing: compensation mechanisms and colour constancy across the life span,” Prog. Retinal Eye Res. 15, 621–645 (1996). [CrossRef]
  11. J. Pokorny, V. C. Smith, and M. Lutze, “Aging of the human lens,” Appl. Opt. 26, 1437–1440 (1987). [CrossRef]
  12. R. A. Weale, “Age and the transmittance of the human crystalline lens,” J. Physiol. 395, 577–587 (1988).
  13. K. Okajima and M. Takase, “Computerized simulation and chromatic adaptation experiments on a model of aged human lens,” Opt. Rev. 8, 64–70 (2001). [CrossRef]
  14. D. Nguyen-Tri, O. Overbury, and J. Faubert, “The role of lenticular senescence in age-related color vision changes,” Invest. Ophthalmol. Vis. Sci. 44, 3698–3704 (2003). [CrossRef]
  15. S. Wuerger, “Colour constancy across the life span: evidence for compensatory mechanisms,” PLoS ONE 8, e63921 (2013). [CrossRef]
  16. J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2129 (1988). [CrossRef]
  17. S. Wuerger, K. Xiao, C. Fu, and D. Karataz, “Colour-opponent mechanisms are not affected by age-related chromatic sensitivity changes,” Ophthalmic Physiol. Opt. 30, 653–659 (2010). [CrossRef]
  18. C. Mateus, R. Lemos, M. F. Silva, A. Reis, P. Fonseca, B. Oliveiros, and M. Castelo-Branco, “Aging of low and high level vision: from chromatic and achromatic contrast sensitivity to local and 3D object motion perception,” PLoS ONE 8, e55348 (2013). [CrossRef]
  19. C. A. Johnson, A. J. Adams, J. D. Twelker, and J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988). [CrossRef]
  20. J. M. Kraft and J. S. Werner, “Spectral efficiency across the life span: flicker photometry and brightness matching,” J. Opt. Soc. Am. A 11, 1213–1221 (1994). [CrossRef]
  21. J. S. Werner, M. L. Bieber, and B. E. Schefrin, “Senescence of foveal and parafoveal cone sensitivities and their relations to macular pigment density,” J. Opt. Soc. Am. A 17, 1918–1932 (2000). [CrossRef]
  22. K. Shinomori, B. E. Schefrin, and J. S. Werner, “Age-related changes in wavelength discrimination,” J. Opt. Soc. Am. A 18, 310–318 (2001). [CrossRef]
  23. M. B. Zlatkova, E. Coulter, and R. S. Anderson, “Short-wavelength acuity: blue–yellow and achromatic resolution loss with age,” Vis. Res. 43, 109–115 (2003). [CrossRef]
  24. A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010). [CrossRef]
  25. J. D. Mollon and B. C. Regan, Cambridge Colour Test Handbook (Cambridge Research Systems Ltd., 2000).
  26. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994). [CrossRef]
  27. D. L. MacAdam, “Visual sensitivities to color differences in daylight,” J. Opt. Soc. Am. 32, 247–274 (1942). [CrossRef]
  28. D. F. Ventura, L. C. L. Silveira, A. R. Rodrigues, J. M. De Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge Colour Test,” in Normal & Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 331–339.
  29. G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012). [CrossRef]
  30. B. C. Regan, N. Freudenthaler, R. Kolle, J. D. Mollon, and W. Paulus, “Colour discrimination thresholds in Parkinson’s disease: results obtained with a rapid computer-controlled colour vision test,” Vis. Res. 38, 3427–3431 (1998). [CrossRef]
  31. M. P. Simunovic, M. Votruba, B. C. Regan, and J. D. Mollon, “Colour discrimination ellipses in patients with dominant optic atrophy,” Vis. Res. 38, 3413–3419 (1998). [CrossRef]
  32. M. Castelo-Branco, P. Faria, V. Forjaz, L. R. Kozak, and H. Azevedo, “Simultaneous comparison of relative damage to chromatic pathways in ocular hypertension and glaucoma: correlation with clinical measures,” Invest. Ophthalmol. Vis. Sci. 45, 499–505 (2004). [CrossRef]
  33. M. F. Silva, P. Faria, F. S. Regateiro, V. Forjaz, C. Januário, A. Freire, and M. Castelo-Branco, “Independent patterns of damage within magno-, parvo- and koniocellular pathways in Parkinson’s disease,” Brain 128, 2260–2271 (2005). [CrossRef]
  34. D. F. Ventura, M. Gualtieri, M. F. Costa, P. Quiros, F. Sadun, A. M. de Negri, S. R. Salomão, A. Berezovsky, J. Sherman, A. A. Sadun, and V. Carelli, “Male prevalence of acquired color vision defects in asymptomatic carriers of Leber’s hereditary optic neuropathy,” Invest. Ophthalmol. Vis. Sci. 48, 2362–2370 (2007). [CrossRef]
  35. C. Feitosa-Santana, M. T. S. Barboni, N. N. Oiwa, G. V. Paramei, A. L. Simões, M. F. Costa, L. C. L. Silveira, and D. F. Ventura, “Irreversible color vision losses in patients with chronic mercury vapor intoxication,” Vis. Neurosci. 25, 487–491 (2008). [CrossRef]
  36. A. L. D. A. Moura, R. A. A. Teixeira, N. N. Oiwa, M. F. Costa, C. Feitosa-Santana, D. Callegaro, R. D. Hamer, and D. F. Ventura, “Chromatic discrimination losses in multiple sclerosis patients with and without optic neuritis using the Cambridge Colour Test,” Vis. Neurosci. 25, 463–468 (2008). [CrossRef]
  37. C. Feitosa-Santana, G. V. Paramei, M. Nishi, M. Gualtieri, M. F. Costa, and D. F. Ventura, “Color vision impairment in type 2 diabetes assessed by the D-15d test and the Cambridge Colour Test,” Ophthalmic Physiol. Opt. 30, 717–723 (2010). [CrossRef]
  38. A. Reis, C. Mateus, M. C. Macário, J. R. F. de Abreu, and M. Castelo-Branco, “Independent patterns of damage to retinocortical pathways in multiple sclerosis without a previous episode of optic neuritis,” J. Neurol. 258, 1695–1704 (2011). [CrossRef]
  39. S. Ishihara, Test for Colour-Blindness, 24 Plates Edition (Kanehra Shupan Co., Ltd., 1973).
  40. D. Farnsworth, “Farnsworth-Munsell 100-Hue and dichotomous test for color vision,” J. Opt. Soc. Am. 33, 568–578 (1943). [CrossRef]
  41. P. Lanthony, “The Desaturated Panel D-15,” Doc. Ophthalmol. 46, 185–189 (1978).
  42. D. de Fez, J. Luque, and V. Viqueira, “Enhancement of contrast sensitivity and losses of chromatic discrimination with tinted lenses,” Optom. Vis. Sci. 79, 590–597 (2002). [CrossRef]
  43. Cambridge Research Systems Ltd., http://www.crsltd.com/tools-for-vision-science/measuring-visual-functions/cambridge-colour-test/ .
  44. K. Krishnamoorthy, Handbook of Statistical Distributions with Applications (Chapman & Hall/CRC Press, 2006), pp. 323–324.
  45. STATGRAPHICS Centurion: http://www.statgraphics.com .
  46. K. Knoblauch and L. T. Maloney, Modeling Psychophysical Data in R (Springer, 2012), Chap. 2, pp. 45–56.
  47. M. F. Costa, D. F. Ventura, F. Perazzolo, M. Murakoshi, and L. C. L. Silveira, “Absence of binocular summation, eye dominance, and learning effects in color discrimination,” Vis. Neurosci. 23, 461–469 (2006). [CrossRef]
  48. J. K. Hovis, “Comparison of three computer based color vision tests,” Aviation Space Environ. Med. 82, 243 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited