OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A394–A400

Independence and interaction of luminance and chromatic contributions to spatial hyperacuity performance

Bonnie Cooper and Barry B. Lee  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A394-A400 (2014)
http://dx.doi.org/10.1364/JOSAA.31.00A394


View Full Text Article

Enhanced HTML    Acrobat PDF (422 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Here we test interactions of luminance and chromatic input to spatial hyperacuity mechanisms. First, we tested alignment of luminance and chromatic gratings matched or mismatched in contrast polarity or grating type. Thresholds with matched gratings were low while all mismatched pairs were elevated. Second, we determined alignment acuity as a function of luminance or chromatic contrast alone or in the presence of constant contrast components of the other type. For in-phase components, performance followed the envelope of the more sensitive mechanism. However, polarity reversals revealed an asymmetric effect for luminance and chromatic conditions, which suggested that luminance can override chromatic mechanisms in hyperacuity; we interpret these findings in the context of spatial mechanisms.

© 2014 Optical Society of America

OCIS Codes
(330.1720) Vision, color, and visual optics : Color vision
(330.5510) Vision, color, and visual optics : Psychophysics
(330.6100) Vision, color, and visual optics : Spatial discrimination

ToC Category:
Color sensitivity and appearance

History
Original Manuscript: September 30, 2013
Revised Manuscript: February 1, 2014
Manuscript Accepted: February 2, 2014
Published: March 11, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Bonnie Cooper and Barry B. Lee, "Independence and interaction of luminance and chromatic contributions to spatial hyperacuity performance," J. Opt. Soc. Am. A 31, A394-A400 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A394


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Westheimer, “The spatial sense of the eye,” Investig. Ophthalmol. Vis. Sci. 18, 893–912 (1979).
  2. G. Westheimer, Progress in Sensory Physiology, D. Ottoson, ed. (Springer, 1981), pp. 1–30.
  3. G. Westheimer, “Optical superresolution and visual hyperacuity,” Prog. Retinal Eye Res. 31, 467–480 (2012). [CrossRef]
  4. G. Westheimer and S. P. McKee, “Spatial configurations for visual hyperacuity,” Vis. Res. 17, 941–947 (1977). [CrossRef]
  5. G. Westheimer and S. P. McKee, “Integration regions for visual hyperacuity,” Vis. Res. 17, 89–93 (1977). [CrossRef]
  6. W. S. Geisler, “Physical limits of acuity and hyperacuity,” J. Opt. Soc. Am. A 1, 775–782 (1984). [CrossRef]
  7. D. M. Levi and G. Westheimer, “Spatial-interval discrimination in the human fovea: what delimits the interval,” J. Opt. Soc. Am. A 4, 1304–1313 (1987). [CrossRef]
  8. G. Westheimer and S. P. McKee, “Visual acuity in the presence of retinal-image motion,” J. Opt. Soc. Am. 65, 847–850 (1975). [CrossRef]
  9. R. F. Hess and A. Hayes, “The coding of spatial position by the human visual system: effects of spatial scale and retinal eccentricity,” Vis. Res. 34, 625–643 (1994). [CrossRef]
  10. B. B. Lee, C. Wehrhahn, G. Westheimer, and J. Kremers, “Macaque ganglion cell responses to stimuli that elicit hyperacuity in man: detection of small displacements,” J. Neurosci. 13, 1001–1009 (1993).
  11. M. A. Paradiso, T. Carney, and R. D. Freeman, “Cortical processing of hyperacuity tasks,” Vis. Res. 29, 247–254 (1989). [CrossRef]
  12. L. R. Rüttiger and B. B. Lee, “Vernier signals derived from primate ganglion cells: effects of motion speed and contrast,” Investig. Ophthalmol. Vis. Sci. 39, S564 (supplement) (1998).
  13. H. Sun, L. Ruttiger, and B. B. Lee, “The spatiotemporal precision of ganglion cell signals: a comparison of physiological and psychophysical performance with moving gratings,” Vis. Res. 44, 19–33 (2004). [CrossRef]
  14. S. J. Waugh and D. M. Levi, “Visibility, luminance and vernier acuity,” Vis. Res. 33, 527–538 (1993). [CrossRef]
  15. S. J. Waugh and D. M. Levi, “Visibility and vernier acuity for separated targets,” Vis. Res. 33, 539–552 (1993). [CrossRef]
  16. R. L. DeValois and K. K. DeValois, “Vernier acuity with stationary moving Gabors,” Vis. Res. 31, 1619–1626 (1991). [CrossRef]
  17. J. Krauskopf and B. Farell, “Vernier acuity: effects of chromatic content, blur and contrast,” Vis. Res. 31, 735–749 (1991). [CrossRef]
  18. H. Sun, B. Cooper, and B. B. Lee, “Luminance and chromatic contributions to a hyperacuity task: isolation by contrast polarity and target separation,” Vis. Res. 56, 28–37 (2012). [CrossRef]
  19. D. M. Levi and S. J. Waugh, “Position acuity with opposite-contrast polarity features: evidence for a nonlinear collector mechanism for position acuity?” Vis. Res. 36, 573–588 (1996). [CrossRef]
  20. D. M. Levi and S. A. Klein, “The role of separation and eccentricity in encoding position,” Vis. Res. 30, 557–585 (1990). [CrossRef]
  21. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  22. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  23. S. Anstis and P. Cavanagh, Colour Vision Physiology and Psychophysics, J. D. Mollon and L. T. Sharpe, eds. (Academic, 1983), pp. 155–166.
  24. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500  nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  25. A. Bradley and B. C. Skottun, “Effects of contrast and spatial frequency on Vernier acuity,” Vis. Res. 27, 1817–1824 (1987). [CrossRef]
  26. E. Switkes, A. Bradlee, and K. K. DeValois, “Contrast dependence and mechanisms of masking interactions among chromatic and luminance gratings,” J. Opt. Soc. Am. 5, 1149–1162 (1988). [CrossRef]
  27. G. R. Cole, C. F. Stromeyer, and R. E. Kronauer, “Visual interactions with luminance and chromatic stimuli,” J. Opt. Soc. Am. A 7, 128–140 (1990). [CrossRef]
  28. M. Losada and K. T. Mullen, “The spatial tuning of chromatic mechanisms identified by simultaneous masking,” Vis. Res. 34, 331–341 (1994). [CrossRef]
  29. S. K. Shevell and F. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008). [CrossRef]
  30. C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals I: threshold measurements,” Vis. Res. 40, 773–788 (2000). [CrossRef]
  31. C. C. Chen, J. M. Foley, and D. H. Brainard, “Detection of chromoluminance patterns on chromoluminance pedestals II: models,” Vis. Res. 40, 789–803 (2000). [CrossRef]
  32. S. J. Cropper, “The detection of motion in chromatic stimuli: pedestals and masks,” Vis. Res. 46, 724–738 (2006). [CrossRef]
  33. Z. N. Lu, L. A. Lesmes, and G. Sperling, “The mechanism of isoluminant chromatic motion perception,” Proc. Natl. Acad. Sci. USA 96, 8289–8294 (1999). [CrossRef]
  34. F. A. A. Kingdom, J. Bell, E. Gheorghiu, and G. Malkoc, “Chromatic variations suppress suprathreshold brightness variations,” J. Vis. 10(10):13 (2010).
  35. M. J. Morgan and T. S. Aiba, “Positional acuity with chromatic stimuli,” Vis. Res. 25, 689–695 (1985). [CrossRef]
  36. K. R. Gegenfurtner and D. C. Kiper, “Contrast detection in luminance and chromatic noise,” J. Opt. Soc. Am. A 9, 1880–1888 (1992). [CrossRef]
  37. B. B. Lee, L. Rüttiger, and H. Sun, “Ganglion cell signals and mechanisms for the localization of moving targets,” Perception 34, 975–981 (2005). [CrossRef]
  38. H. Sun, B. B. Lee, and L. Rüttiger, Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 79–87.
  39. R. P. O’Shea and D. E. Mitchell, “Vernier acuity with opposite-contrast stimuli,” Perception 19, 207–221 (1990). [CrossRef]
  40. B. Sayim, G. Westheimer, and M. H. Herzog, “Contrast polarity, chromaticity, and stereoscopic depth modulate contextual interactions in vernier acuity,” J. Vis. 8(8):12 (2008).
  41. S. P. McKee, “The spatial requirements for fine stereoacuity,” Vis. Res. 23, 191–198 (1983). [CrossRef]
  42. H. Sun and B. B. Lee, “A single mechanism for both luminance and chromatic grating vernier tasks: evidence from temporal summation,” Vis. Neurosci. 21, 315–320 (2004). [CrossRef]
  43. D. H. Hubel and T. N. Wiesel, “Receptive fields, binocular interaction, and functional architecture in the cat’s visual cortex,” J. Physiol. 160, 106–154 (1962).
  44. D. H. Hubel and T. N. Wiesel, “Receptive fields and functional architecture of monkey striate cortex,” J. Physiol. 195, 215–243 (1968).
  45. H. Wang and D. M. Levi, “Spatial integration in position acuity,” Vis. Res. 34, 2859–2877 (1994). [CrossRef]
  46. S. J. Waugh and D. M. Levi, “Spatial alignment across gaps: contributions of orientation and spatial scale,” J. Opt. Soc. Am. A 12, 2305–2317 (1995). [CrossRef]
  47. S. Cropper and S. Wuerger, “The perception of motion in chromatic stimuli,” Behav. Cogn. Neurosci. Rev. 4, 192–217 (2005). [CrossRef]
  48. D. R. Simmons and F. A. Kingdom, “Interactions between chromatic- and luminance-contrast-sensitive stereopsis mechanisms,” Vis. Res. 42, 1535–1545 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited