OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A401–A409

Performance of normal females and carriers of color-vision deficiencies on standard color-vision tests

Elise W. Dees and Rigmor C. Baraas  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A401-A409 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (394 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Carriers of red–green color-vision deficiencies are generally thought to behave like normal trichromats, although it is known that they may make errors on Ishihara plates. The aim here was to compare the performance of carriers with that of normal females on seven standard color-vision tests, including Ishihara plates. One hundred and twenty-six normal females, 14 protan carriers, and 29 deutan carriers aged 9–66 years were included in the study. Generally, deutan carriers performed worse than protan carriers and normal females on six out of the seven tests. The difference in performance between carriers and normal females was independent of age, but the proportion of carriers that made errors on pseudo-isochromatic tests increased with age. It was the youngest carriers, however, who made the most errors. There was considerable variation in performance among individuals in each group of females. The results are discussed in relation to variability in the number of different L-cone pigments.

© 2014 Optical Society of America

OCIS Codes
(170.1610) Medical optics and biotechnology : Clinical applications
(170.4470) Medical optics and biotechnology : Ophthalmology
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.1720) Vision, color, and visual optics : Color vision
(330.7323) Vision, color, and visual optics : Visual optics, aging changes

ToC Category:
Variations and deficiencies of color vision

Original Manuscript: October 3, 2013
Revised Manuscript: January 31, 2014
Manuscript Accepted: January 31, 2014
Published: March 13, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Elise W. Dees and Rigmor C. Baraas, "Performance of normal females and carriers of color-vision deficiencies on standard color-vision tests," J. Opt. Soc. Am. A 31, A401-A409 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Neitz and M. Neitz, “The genetics of normal and defective color vision,” Vis. Res. 51, 633–651 (2011). [CrossRef]
  2. G. H. M. Waaler, “Über die erblichkeitsverhältnisse der verschiedenen arten von angeborener rotgrünblindheit,” Acta Ophthalmol. 5, 309–345 (1927).
  3. L. T. Sharpe, A. Stockman, H. Jägle, and J. Nathans, “Opsin genes, cone photopigments, color vision, and color blindness,” in Color Vision: From Genes to Perception, K. R. Gegenfurtner and L. T. Sharpe, eds. (Cambridge University, 1999), pp. 3–51.
  4. A. E. Krill, “X-chromosomal-linked diseases affecting the eye: status of the heterozygote female,” Trans. Am. Ophthalmol. Soc. 67, 535–608 (1969).
  5. G. H. M. Waaler, Genetics and Physiology of Colour Vision (‘My Story on Colour Vision Genetics and Physiology’) (Universitetsforlaget, 1973).
  6. G. Jordan and J. D. Mollon, “A study of women heterozygous for colour deficiencies,” Vis. Res. 33, 1495–1508 (1993). [CrossRef]
  7. A. R. Hill, “Decision uncertainty for a homozygous or heterozygous female,” in Colour Vision Deficiencies V, G. Verriest, ed. (Adam Hilger, 1980), pp. 261–267.
  8. A. E. Krill and A. Schneiderman, “A Hue discrimination defect in so-called normal carriers of color vision defects,” Investig. Ophthalmol. Vis. Sci. 3, 445–450 (1964).
  9. G. H. M. Waaler, “The heredity of normal and defective colour vision,” Avhandling Det norske videnskaps-akademi 9, 1–25 (1967).
  10. I. Schmidt, “Über manifeste Heterozygotie bei Konduktorinnen für Farbensinnstörungen,” Klinische Monatsblätter für Augenheilkunde 92, 456–467 (1934).
  11. D. M. Tait and J. Carroll, “Normality of colour vision in a compound heterozygous female carrying protan and deutan defects,” Clin. Exp. Optom. 92, 356–361 (2009). [CrossRef]
  12. S. M. Hood, J. D. Mollon, L. Purves, and G. Jordan, “Color discrimination in carriers of color deficiency,” Vis. Res. 46, 2894–2900 (2006). [CrossRef]
  13. R. A. Crone, “Spectral sensitivity in color-defective subjects and heterozygous carriers,” Am. J. Ophthalmol. 48, 231–238 (1959).
  14. G. Jordan and J. D. Mollon, “Sons and mothers: classification of colour-deficient and heterozygous subjects by counterphase modulation photometry,” in Colour Vision Deficiencies XIII, C. R. Cavonius, ed. (Kluwer Academic, 1997), pp. 385–392.
  15. A. Lang and G. W. Good, “Color discrimiation in heterozygous deutan carriers,” Optom. Vis. Sci. 78, 584–588 (2001). [CrossRef]
  16. H. L. De Vries, “The luminosity curve of the eye as determined by measurements with the flickerphotometer,” Physica 14, 319–333 (1948). [CrossRef]
  17. K. Feig and H.-H. Ropers, “On the incidence of unilateral and bilateral colour blindness in heterozygous females,” Hum. Genet. 41, 313–323 (1978). [CrossRef]
  18. J. E. Bailey, M. Neitz, D. M. Tait, and J. Neitz, “Evaluation of an updated HRR color vision test,” Vis. Neurosci. 21, 431–436 (2004). [CrossRef]
  19. R. C. Baraas, “Poorer color discrimination by females when tested with pseudoisochromatic plates containing vanishing designs on neutral backgrounds,” Vis. Neurosci. 25, 501–505 (2008). [CrossRef]
  20. E. Konstantakopoulou, M. Rodriguez-Carmona, and J. L. Barbur, “Processing of color signals in female carriers of color vision deficiency,” J. Vis. 12(2):11, 1035–1037 (2012). [CrossRef]
  21. M. V. Danilova, C. H. Chan, and J. D. Mollon, “Can spatial resolution reveal individual differences in the L:M cone ratio?” Vis. Res. 78, 26–38 (2013). [CrossRef]
  22. A. L. Jørgensen, J. Philip, W. H. Raskind, M. Matsushita, B. Christensen, V. Dreyer, and A. G. Motulsky, “Different patterns of X inactivation in MZ twins disordant for red–green color-vision deficiency,” Am. J. Hum. Genet. 51, 291–298 (1992).
  23. D. M. Hunt, K. S. Dulai, J. A. Cowing, C. Julliot, J. D. Mollon, J. K. Bowmaker, W.-H. Li, and D. Hewett-Emmett, “Molecular evolution of trichromacy in primates,” Vis. Res. 38, 3299–3306 (1998). [CrossRef]
  24. M. F. Lyon, “X-chromosome inactivation and developmental patterns in mammals,” Biol. Rev. 47, 1–35 (1972). [CrossRef]
  25. A. Roorda and D. R. Williams, “The arrangement of the three cone classes in the living human eye,” Nature 397, 520–522 (1999). [CrossRef]
  26. A. Roorda, A. B. Metha, P. Lennie, and D. R. Williams, “Packing arrangement of the three cone classes in primate retina,” Vis. Res. 41, 1291–1306 (2001). [CrossRef]
  27. J. K. Bowmaker, J. W. L. Parry, and J. D. Mollon, “The arrangement of L and M cones in human retina and a primate retina,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokorny, and K. Knoblauch, eds. (Oxford University, 2003), pp. 39–50.
  28. S. S. Deeb, “Genetics of variation in human color vision and the retinal cone mosaic,” Curr. Opin. Genet. Dev. 16, 301–307 (2006). [CrossRef]
  29. J. M. Bosten, J. D. Robinson, G. Jordan, and J. D. Mollon, “Multidimensional scaling reveals a color dimension unique to ‘color-deficient’ observers,” Curr. Biol. 15, R950–R952 (2005). [CrossRef]
  30. M. Neitz, T. W. Kraft, and J. Neitz, “Expression of L cone pigment gene subtypes in females,” Vis. Res. 38, 3221–3225 (1998). [CrossRef]
  31. M. Drummond-Borg, S. Deeb, and A. G. Motulsky, “Molecular basis of abnormal red–green colour vision: a family with three types of color vision defects,” Am. J. Hum. Genet. 43, 675–683 (1988).
  32. E. Miyahara, J. Pokorny, V. C. Smith, R. Baron, and E. Baron, “Color vision in two observers with highly biased LWS/MWS cone ratios,” Vis. Res. 38, 601–612 (1998). [CrossRef]
  33. T. Hayashi, A. G. Motulsky, and S. S. Deeb, “Position of a ‘green–red’ hybrid gene in the visual pigment array determines colour-vision phenotype,” Nat. Genet. 22, 90–93 (1999). [CrossRef]
  34. Y. Wang, P. M. Smallwood, M. Cowan, D. Blesh, A. Lawler, and J. Nathans, “Mutually exclusive expression of human red and green visual pigment-reporter transgenes occurs at high frequency in murine cone photoreceptors,” Proc. Natl. Acad. Sci. USA 96, 5251–5256 (1999). [CrossRef]
  35. K. L. Gunther and K. R. Dobkins, “Individual differences in chromatic (red/green) contrast sensitivity are constrained by the relative number of L- versus M-cones in the eye,” Vis. Res. 42, 1367–1378 (2002). [CrossRef]
  36. M. Neitz and J. Neitz, “Molecular genetics and the biological basis of color vision,” in Color Vision: Perspectives from Different Disciplines, R. Kliegl, W. G. K. Backhaus, and J. S. Werner, eds. (Walter de Gruyter, 1998), pp. 101–119.
  37. B. L. Cole, K.-Y. Lian, and C. Lakkis, “The new Richmond HRR pseudoisochromatic test for colour vision is better than the Ishihara test,” Clin. Exp. Optom. 89, 73–80 (2006). [CrossRef]
  38. M. Neitz and J. Neitz, “A new mass screening test for color-vision deficiencies in children,” Color Res. Appl. 26, S239–S249 (2001). [CrossRef]
  39. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994). [CrossRef]
  40. P. R. Kinnear and A. Sahraie, “New Farnsworth–Munsell 100 Hue test norms of normal observers for each year of age 5–22 and for age decades 30–70,” Br. J. Ophthalmol. 86, 1408–1411 (2002). [CrossRef]
  41. G. Verriest, J. V. Laethem, and A. Uvijls, “A new assessment of the normal ranges of the Farnsworth–Munsell 100-Hue test scores,” Am. J. Ophthalmol. 93, 635–642 (1982).
  42. A. R. Hill, G. Heron, M. Lloyd, and P. Lowther, “An evaluation of some colour visions tests for children,” in Documenta Ophthalmologica, G. Verriest, ed., Proceedings Series (Springer, 1982), pp. 183–187.
  43. V. C. Smith, J. Pokorny, and A. S. Pass, “Color-axis determination on the Farnsworth–Munsell 100-Hue test,” Am. J. Ophthalmol. 100, 176–182 (1985).
  44. K. Bucher, T. Dietrich, V. L. Marcar, S. Brem, P. Halder, S. Boujraf, P. Summers, D. Brandeis, E. Martin, and T. Loenneker, “Maturation of luminance- and motion-defined form perception beyond adolescence: a combined ERP and fMRI study,” NeuroImage 31, 1625–1636 (2006). [CrossRef]
  45. K. Knoblauch, F. Vital-Durand, and J. L. Barbur, “Variation of chromatic sensitivity across the life span,” Vis. Res. 41, 23–36 (2001). [CrossRef]
  46. A. M. Norcia and R. E. Manny, “Development of vision in infancy,” in Adler’s Physiology of the Eye, P. L. Kaufman and A. Alm, eds., 10th ed. (Mosby, 2003), pp. 713–724.
  47. M. Rodríguez-Carmona, L. T. Sharpe, J. A. Harlow, and J. L. Barbur, “Sex-related differences in chromatic sensitivity,” Vis. Neurosci. 25, 433–440 (2008). [CrossRef]
  48. G. Verriest, “Chromaticity discrimination in protan and deutan heterozygotes,” Die Farbe 21, 7–16 (1972).
  49. S. J. Dain and B. Y. Ling, “Cognitive abilities of children on a gray seriation test,” Optom. Vis. Sci. 86, E701–E707 (2009). [CrossRef]
  50. G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge Colour Test,” J. Opt. Soc. Am. A 29, A290–A297 (2012). [CrossRef]
  51. K. Knoblauch, F. Saunders, M. Kusuda, R. Hynes, M. Podgor, K. E. Higgins, and F. M. de Monasterio, “Age and illuminance effects in the Farnsworth–Munsell 100-Hue test,” Appl. Opt. 26, 1441–1448 (1987). [CrossRef]
  52. J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988). [CrossRef]
  53. A. Werner, A. Bayer, G. Schwarz, E. Zrenner, and W. Paulus, “Effects of ageing on postreceptoral short-wavelength gain control: transient tritanopia increases with age,” Vis. Res. 50, 1641–1648 (2010). [CrossRef]
  54. A. B. Metha and A. J. Vingrys, “The C-100: a new dichotomiser of colour vision defectives,” Clin. Exp. Optom. 75, 114–123 (1992). [CrossRef]
  55. R. W. Harris and B. L. Cole, “Diagnosing protan heterozygosity using the Medmont C-100 colour vision test,” Clin. Exp. Optom. 88, 240–247 (2005). [CrossRef]
  56. R. W. Harris and B. L. Cole, “One of Australia’s greatest cricketers was a protanope: a genetic detective story solved with the help of Schmidt’s sign,” Clin. Exp. Optom. 88, 405–409 (2005). [CrossRef]
  57. J. K. Hovis, “Repeatability of the C-100 colour vision test,” Clin. Exp. Optom. 86, 173–178 (2003). [CrossRef]
  58. H. Hofer, J. Carroll, J. Neitz, M. Neitz, and D. R. Williams, “Organization of the human trichromatic cone mosaic,” J. Neurosci. 25, 9669–9679 (2005). [CrossRef]
  59. M. L. Bieber, J. M. Kraft, and J. S. Werner, “Effects of known variations in photopigments on L/M cone ratios estimated from luminous efficiency functions,” Vis. Res. 38, 1961–1966 (1998). [CrossRef]
  60. J. Winderickx, D. T. Lindsey, E. Sanocki, D. Y. Teller, A. G. Motulsky, and S. S. Deeb, “Polymorphism in red photopigment underlies variation in colour matching,” Nature 356, 431–433 (1992). [CrossRef]
  61. L. T. Sharpe, A. Stockman, H. Jägle, H. Knau, G. Klausen, A. Reitner, and J. Nathans, “Red, green, and red–green hybrid pigments in the human retina: correlations between deduced protein sequences and psychophysically measured spectral sensitivities,” J. Neurosci. 18, 10053–10069 (1998).
  62. S. L. Merbs and J. Nathans, “Absorption spectra of human cone pigments,” Nature 356, 433–435 (1992). [CrossRef]
  63. A. B. Asenjo, J. Rim, and D. D. Oprian, “Molecular determinants of human red/green color discrimination,” Neuron 12, 1131–1138 (1994). [CrossRef]
  64. J. Neitz and G. H. Jacobs, “Polymorphism of the long-wavelength cone in normal human colour vision,” Nature 323, 623–625 (1986). [CrossRef]
  65. T. P. Piantanida and J. Gille, “Methodology-specific Rayleigh-match distributions,” Vis. Res. 32, 2375–2377 (1992). [CrossRef]
  66. J. Neitz, M. Neitz, and G. H. Jacobs, “More than three different cone pigments among people with normal color vision,” Vis. Res. 33, 117–122 (1993). [CrossRef]
  67. J. Birch, A. Young, and S. David, “Variations in normal trichromatism,” in Colour Vision Deficiencies X, B. Drum, J. D. Moreland, and A. Serra, eds. (Springer, 1991), pp. 267–272.
  68. Y. Sun and S. K. Shevell, “Rayleigh matches in carriers of inherited color vision defects: the contribution from the third L/M photopigment,” Vis. Neurosci. 25, 455–462 (2008).
  69. S. J. Dain, “Clinical colour vision tests,” Clin. Exp. Optom. 87, 276–293 (2004). [CrossRef]
  70. P. J. Pardo, A. L. Pérez, and M. I. Suero, “An example of sex-linked color vision differences,” Color Res. Appl. 32, 433–439 (2007). [CrossRef]
  71. I. J. Murray, N. R. A. Parry, D. J. McKeefry, and A. Panorgias, “Sex-related differences in peripheral human color vision: a color matching study,” J. Vis. 12(1):18, 1230–1236 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited