OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A47–A54

Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones

Jenny M. Bosten, Gary Bargary, Patrick T. Goodbourn, Ruth E. Hogg, Adam J. Lawrance-Owen, and J. D. Mollon  »View Author Affiliations

JOSA A, Vol. 31, Issue 4, pp. A47-A54 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (604 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Distinct neural populations carry signals from short-wave (S) cones. We used individual differences to test whether two types of pathways, those that receive excitatory input (S+) and those that receive inhibitory input (S), contribute independently to psychophysical performance. We also conducted a genome-wide association study (GWAS) to look for genetic correlates of the individual differences. Our psychophysical test was based on the Cambridge Color Test, but detection thresholds were measured separately for S-cone spatial increments and decrements. Our participants were 1060 healthy adults aged 16–40. Test–retest reliabilities for thresholds were good (ρ=0.64 for S-cone increments, 0.67 for decrements and 0.73 for the average of the two). “Regression scores,” isolating variability unique to incremental or decremental sensitivity, were also reliable (ρ=0.53 for increments and ρ=0.51 for decrements). The correlation between incremental and decremental thresholds was ρ=0.65. No genetic markers reached genome-wide significance (p<5×107). We identified 18 “suggestive” loci (p<105). The significant test–retest reliabilities show stable individual differences in S-cone sensitivity in a normal adult population. Though a portion of the variance in sensitivity is shared between incremental and decremental sensitivity, over 26% of the variance is stable across individuals, but unique to increments or decrements, suggesting distinct neural substrates. Some of the variability in sensitivity is likely to be genetic. We note that four of the suggestive associations found in the GWAS are with genes that are involved in glucose metabolism or have been associated with diabetes.

© 2013 Optical Society of America

OCIS Codes
(330.1690) Vision, color, and visual optics : Color
(330.1720) Vision, color, and visual optics : Color vision
(330.5020) Vision, color, and visual optics : Perception psychology
(330.5310) Vision, color, and visual optics : Vision - photoreceptors
(330.5510) Vision, color, and visual optics : Psychophysics

ToC Category:
Retinal and cortical color processing

Original Manuscript: September 30, 2013
Manuscript Accepted: November 6, 2013
Published: December 19, 2013

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Jenny M. Bosten, Gary Bargary, Patrick T. Goodbourn, Ruth E. Hogg, Adam J. Lawrance-Owen, and J. D. Mollon, "Individual differences provide psychophysical evidence for separate on- and off-pathways deriving from short-wave cones," J. Opt. Soc. Am. A 31, A47-A54 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Pokorny, V. C. Smith, G. Verriest, and A. J. L. G. Pinckers, Congenital and Acquired Color Vision Defects (Grune & Stratton, 1979).
  2. D. M. Dacey and B. B. Lee, “The ‘blue-on’ opponent pathway in primate retina originates from a distinct bistratified ganglion cell type,” Nature 367, 731–735 (1994). [CrossRef]
  3. D. J. Calkins, Y. Tsukamoto, and P. Sterling, “Microcircuitry and mosaic of a blue–yellow ganglion cell in the primate retina,” J. Neurosci. 18, 3373–3385 (1994).
  4. D. M. Dacey, “Origins of perception: retinal ganglion cell diversity and the creation of parallel visual pathways,” in The Cognitive Neurosciences, M. Gazzaniga, ed. (MIT, 2004), pp. 281–301.
  5. D. M. Dacey, H. W. Liao, B. B. Peterson, F. R. Robinson, V. C. Smith, J. Pokorny, K.-W. Yau, and P. D. Gamlin, “Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN,” Nature, 433, 749–754 (2005). [CrossRef]
  6. G. D. Field, J. L. Gauthier, A. Sher, M. Greschner, T. A. Machado, L. H. Jepson, J. Shlens, D. E. Gunning, K. Mathieson, W. Dabrowski, L. Paninski, A. Litke, and E. J. Chichilnisky, “Functional connectivity in the retina at the resolution of photoreceptors,” Nature 467, 673–677 (2010). [CrossRef]
  7. K. Klug, S. Herr, I. T. Ngo, P. Sterling, and S. Schein, “Macaque retina contains an S-cone OFF midget pathway,” J. Neurosci. 23, 9881–9887 (2003).
  8. C. Tailby, S. G. Solomon, and P. Lennie, “Functional asymmetries in visual pathways carrying S-cone signals in macaque,” J. Neurosci. 28, 4078–4087 (2008). [CrossRef]
  9. A. Valberg, B. B. Lee, and D. A. Tigwell, “Neurones with strong inhibitory S-cone inputs in the macaque lateral geniculate nucleus,” Vis. Res. 26, 1061–1064 (1986). [CrossRef]
  10. K. Shinomori, L. Spillmann, and J. S. Werner, “S-cone signals to temporal off-channels: asymmetrical connections to postreceptoral chromatic mechanisms,” Vis. Res. 39, 39–49 (1999). [CrossRef]
  11. J. Krauskopf and Q. Zaidi, “Induced desensitization,” Vis. Res. 26, 759–762 (1986). [CrossRef]
  12. J. M. Bosten and D. I. A. MacLeod, “Mechanisms of the dimming and brightening after-effects,” J. Vision 13(6), 11 (2013). [CrossRef]
  13. A. Hughes and P. J. DeMarco, “Time course of adaptation to stimuli presented along cardinal lines in color space,” J. Opt. Soc. Am. A 20, 2216–2227 (2003). [CrossRef]
  14. A. Vassilev, M. S. Mihaylova, K. Racheva, M. Zlatkova, and R. S. Anderson, “Spatial summation of S-cone on and off signals: effects of retinal eccentricity,” Vis. Res. 43, 2875–2884 (2003). [CrossRef]
  15. R. H. Thouless, “Individual differences in perception and their significance in psychology,” in Essays in Psychology Dedicated to David Katz, G. Ekman, T. Husen, G. Johansson, and C. I. Sandstrom, eds. (Almqvist & Wiksells, 1951).
  16. D. H. Peterzell and D. Y. Teller, “Spatial frequency tuned covariance channels for red–green and luminance-modulated gratings: psychophysical data from human adults,” Vis. Res. 40, 417–430 (2000). [CrossRef]
  17. J. B. Wilmer, “How to use individual differences to isolate functional organization, biology, and utility of visual functions; with illustrative proposals for stereopsis,” Spatial Vision 21, 561–579 (2008). [CrossRef]
  18. P. T. Goodbourn, J. M. Bosten, R. E. Hogg, G. Bargary, A. J. Lawrance-Owen, and J. D. Mollon, “Do different ‘magnocellular tasks’ probe the same neural substrate?” Proc. R. Soc. B 279, 4263–4271 (2012). [CrossRef]
  19. A. J. Lawrance-Owen, G. Bargary, J. M. Bosten, P. T. Goodbourn, R. E. Hogg, and J. D. Mollon, “Genetic association suggests that SMOC1 mediates between prenatal sex hormones and digit ratio,” Hum. Genet. 132, 415–421 (2013). [CrossRef]
  20. B. C. Regan, J. P. Reffin, and J. D. Mollon, “Luminance noise and the rapid determination of discrimination ellipses in colour deficiency,” Vis. Res. 34, 1279–1299 (1994). [CrossRef]
  21. D. F. Ventura, L. C. L. Silveria, A. R. Rodrigues, J. M. de Souza, M. Gualtieri, D. Bonci, and M. F. Costa, “Preliminary norms for the Cambridge colour test,” in Normal and Defective Colour Vision, J. D. Mollon, J. Pokomy, and K. Knoblauch, eds. (Oxford University, 2003) pp. 331–339.
  22. V. C. Smith and J. Pokorny, “Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm,” Vis. Res. 15, 161–171 (1975). [CrossRef]
  23. P. E. King-Smith, S. S. Grigsby, A. J. Vingrys, S. C. Benes, and A. Supowit, “Efficient and unbiased modifications of the QUEST threshold method: theory, simulations, experimental evaluation and practical implementation,” Vis. Res. 34, 885–912 (1994). [CrossRef]
  24. A. B. Watson and D. G. Pelli, “QUEST: a Bayesian adaptive psychometric method,” Percept. Psychophys. 33, 113–120 (1983). [CrossRef]
  25. S. Purcell, B. Neale, K. Todd-Brown, L. Thomas, M. A. Ferreira, D. Bender, J. Maller, P. Sklar, P. I. de Bakker, M. J. Daly, and P. C. Sham, “PLINK: a tool set for whole-genome association and population-based linkage analyses,” Am. J. Hum. Genet. 81, 559–575 (2007). [CrossRef]
  26. A. L. Price, N. J. Patterson, R. M. Plenge, M. E. Weinblatt, N. A. Shadick, and D. Reich, “Principal components analysis corrects for stratification in genome-wide association studies,” Nat. Genet. 38, 904–909 (2006). [CrossRef]
  27. B. N. Howie, P. Donnelly, and J. Marchini, “A flexible and accurate genotype imputation method for the next generation of genome-wide association studies,” PLoS Genet. 5, e1000529 (2009). [CrossRef]
  28. B. Howie, J. Marchini, and M. Stephens, “Genotype imputation with thousands of genomes,” G3: Genes, Genomes, Genet. 1, 457–470 (2011). [CrossRef]
  29. D. I. A. MacLeod and R. M. Boynton, “Chromaticity diagram showing cone excitation by stimuli of equal luminance,” J. Opt. Soc. Am. A 69, 1183–1186 (1979). [CrossRef]
  30. J. DeGutis, J. Wilmer, R. J. Mercado, and S. Cohan, “Using regression to measure holistic face processing reveals a strong link with face recognition ability,” Cognition 126, 87–100 (2013). [CrossRef]
  31. A. J. Lawrance-Owen, J. M. Bosten, R. E. Hogg, G. Bargary, P. T. Goodbourn, and J. D. Mollon, “Counterphase flicker photometry: phenotypic and genotypic associations,” this issue of J. Opt. Soc. Am. A (to be published).
  32. D. H. Kelly, “Frequency doubling in visual responses,” J. Opt. Soc. Am. 56, 1628–1633 (1966). [CrossRef]
  33. A. Leonova, J. Pokorny, and V. C. Smith, “Spatial frequency processing in inferred PC- and MC-pathways,” Vis. Res. 43, 2133–2139 (2003). [CrossRef]
  34. D. Pelli, J. Robson, and A. Wilkins, “The design of a new letter chart for measuring contrast sensitivity,” Clin Vis. Sci. 2, 187–199 (1988).
  35. J. S. Werner and V. G. Steele, “Sensitivity of human foveal color mechanisms throughout the life span,” J. Opt. Soc. Am. A 5, 2122–2130 (1988). [CrossRef]
  36. C. A. Johnson, A. J. Adams, J. D. Twelker, and J. M. Quigg, “Age-related changes in the central visual field for short-wavelength-sensitive pathways,” J. Opt. Soc. Am. A 5, 2131–2139 (1988). [CrossRef]
  37. G. V. Paramei, “Color discrimination across four life decades assessed by the Cambridge colour test,” J. Opt. Soc. Am. A 29, A290–A297 (2012). [CrossRef]
  38. K. T. Mullen, A. Y. Leung, and A. Baxter, “Changes in S-cone increment and decrement sensitivity as a function of age and eccentricity,” J. Vision 8(17), 71 (2008). [CrossRef]
  39. M. B. Donnellan, F. L. Oswalk, B. M. Baird, and R. E. Lucas, “The mini-IPIP scales: tiny-yet-effective measures of the big five factors of personality,” Psychol. Assess. 18, 192–203 (2006). [CrossRef]
  40. F. Ermetici, F. Donadio, L. Iorio, A. E. Malavazos, A. Dolci, E. Peverelli, A. M. Barbierri, L. Morricone, I. Chiodini, M. Arosio, A. Lania, P. Beck-Peccoz, B. Ambrosi, and S. Corbbetta, “Peripheral insulin-like factor 3 concentrations are reduced in men with type 2 diabetes mellitus: effect of glycemic control and visceral adiposity on Leydig cell function,” Eur. J. Endocrinol. 161, 853–859 (2009). [CrossRef]
  41. K. Sakamoto and G. D. Holman, “Emerging role for AS160/TBC1D4 and TBC1D1 in the regulation of GLUT4 traffic,” Am. J. Physiol. Endocrinol. Metab. 295, E29–E37 (2008). [CrossRef]
  42. D. An, T. Toyoda, E. B. Taylor, H. Yu, N. Fujii, M. F. Hirshman, and L. J. Goodyear, “TBC1D1 regulates insulin- and contraction-induced glucose transport in mouse skeletal muscle,” Diabetes 59, 1358–1365 (2010). [CrossRef]
  43. Y. Yu, S. O. Yoon, G. Poulogiannis, Q. Yang, X. M. Ma, J. Villén, N. Kubica, G. R. Hoffman, L. C. Cantley, S. Gygi, and J. Blenis, “Quantitative phosphoproteomic analysis identifies the adaptor protein Grb10 as an mTORC1 substrate that negatively regulates insulin signaling,” Science 332, 1322–1326 (2011). [CrossRef]
  44. E. Rampersaud, C. M. Damcott, M. Fu, H. Shen, P. McArdle, X. Shi, J. Shelton, J. Yin, Y.-P. C. Chang, S. H. Ott, L. Zhang, Y. Zhao, B. D. Mitchell, J. O’Connell, and A. R. Shuldiner, “Evidence for replication from diabetes-related quantitative traits and from independent populations,” Diabetes 56, 3053–3062 (2007). [CrossRef]
  45. M. German and J. Wang, “Localization of the genes encoding two transcription factors, LMX1 and CDX3, regulating insulin gene expression to human chromosomes 1 and 13,” Genomics 24, 403–404 (1994). [CrossRef]
  46. V. C. Greenstein, D. C. Hood, R. Ritch, D. Steinberger, and R. E. Carr, “S (blue) cone pathway vulnerability in retinitis pigmentosa, diabetes and glaucoma,” Investig. Ophthalmol. Vis. Sci. 30, 1732–1737 (1989).
  47. V. C. Greenstein, A. Shapiro, D. C. Hood, and Q. Zaidi, “Chromatic and luminance sensitivity in diabetes and glaucoma,” J. Opt. Soc. Am. A 10, 1785–1791 (1993). [CrossRef]
  48. M. Schneck, A. Adams, V. Volbrecht, and J. Linfoot, “Acute changes in blood glucose and their effects on color vision function,” in Colour Vision Deficiencies XI, B. Drum, ed. (Kluwer Academic, 1993), pp. 165–173.
  49. M. R. Roberts, A. Hendrickson, C. R. McGuire, and T. A. Reh, “Retinoid X receptor γ is necessary to establish the S-opsin gradient in cone photoreceptors of the developing mouse retina,” Investig. Ophthalmol. Vis. Sci. 46, 2897–2904 (2005). [CrossRef]
  50. E. A. Carroll, D. Gerrelli, S. Gasca, E. Berg, D. R. Beier, A. J. Copp, and J. Klingensmith, “Cordon-bleu is a conserved gene involved in neural tube formation,” Dev. Biol. 262, 16–31 (2003). [CrossRef]
  51. R. Ahuja, R. Pinyol, N. Reichenbach, L. Custer, J. Klingensmith, M. M. Kessels, and B. Qualmann, “Cordon-bleu is an actin nucleation factor and controls neuronal morphology,” Cell. 131, 337–350 (2007). [CrossRef]
  52. E. Andersson, U. Tryggvason, Q. Deng, S. Friling, Z. Alekseenko, B. Robert, T. Perlmann, and J. Ericson, “Identification of intrinsic determinants of midbrain dopamine neurons,” Cell. 124, 393–405 (2006). [CrossRef]
  53. W. Y. Lin and W. C. Lee, “Incorporating prior knowledge to facilitate discoveries in a genome-wide association study on age-related macular degeneration,” BMC Res. Notes 3, 26 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited