OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 4 — Apr. 1, 2014
  • pp: A93–A102

Getting the gist of multiple hues: metric and categorical effects on ensemble perception of hue

John Maule, Christoph Witzel, and Anna Franklin  »View Author Affiliations


JOSA A, Vol. 31, Issue 4, pp. A93-A102 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000A93


View Full Text Article

Enhanced HTML    Acrobat PDF (641 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study investigated the perception of colorful ensembles and the effect of categories and perceptual similarity on their representation. We briefly presented ensembles of two hues and tested hue recognition with a range of seen and unseen hues. The average hue was familiar, even though it never appeared in the ensembles. Increasing the perceptual difference of ensemble hues inhibited this mean bias, and the categorical relationship of hues also affected the distribution of familiarity. The findings suggest there is an ensemble perception of hue, but this is affected by the categorical and metric relationships of the elements in the ensemble.

© 2014 Optical Society of America

OCIS Codes
(330.0330) Vision, color, and visual optics : Vision, color, and visual optics
(330.5020) Vision, color, and visual optics : Perception psychology

ToC Category:
Unique hues and color categories

History
Original Manuscript: October 3, 2013
Revised Manuscript: December 6, 2013
Manuscript Accepted: December 13, 2013
Published: January 21, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
John Maule, Christoph Witzel, and Anna Franklin, "Getting the gist of multiple hues: metric and categorical effects on ensemble perception of hue," J. Opt. Soc. Am. A 31, A93-A102 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-4-A93


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. A. Alvarez, “Representing multiple objects as an ensemble enhances visual cognition,” Trends Cogn. Sci. 15, 122–131 (2011). [CrossRef]
  2. J. Haberman and D. Whitney, “Ensemble perception: summarizing the scene and broadening the limits of visual processing,” in From Perception to Consciousness: Searching with Anne Treisman, J. Wolfe and L. Robertson, eds. (Oxford University, 2012), pp. 339–349.
  3. G. A. Alvarez and A. Oliva, “The representation of simple ensemble visual features outside the focus of attention,” Psychol. Sci. 19, 392–398 (2008). [CrossRef]
  4. G. A. Alvarez and A. Oliva, “Spatial ensemble statistics are efficient codes that can be represented with reduced attention,” Proc. Natl. Acad. Sci. USA 106, 7345–7350 (2009). [CrossRef]
  5. A. P. Marchant, D. J. Simons, and J. W. de Fockert, “Ensemble representations: effects of set size and item heterogeneity on average size perception,” Acta Psychol. 142, 245–250 (2013). [CrossRef]
  6. D. Ariely, “Seeing sets: representation by statistical properties,” Psychol. Sci. 12, 157–162 (2001). [CrossRef]
  7. S. C. Chong and A. Treisman, “Representation of statistical properties,” Vis. Res. 43, 393–404 (2003). [CrossRef]
  8. A. R. Albrecht and B. J. Scholl, “Perceptually averaging in a continuous visual world: extracting statistical summary representations over time,” Psychol. Sci. 21, 560–567 (2010). [CrossRef]
  9. K. Myczek and D. J. Simons, “Better than average: alternatives to statistical summary representations for rapid judgments of average size,” Percept. Psychophys. 70, 772–788 (2008). [CrossRef]
  10. D. J. Simons and K. Myczek, “Average size perception and the allure of a new mechanism,” Percept. Psychophys. 70, 1335–1336 (2008). [CrossRef]
  11. D. Ariely, “Better than average? When can we say that subsampling of items is better than statistical summary representations?” Percept. Psychophys. 70, 1325–1326 (2008). [CrossRef]
  12. S. Baijal, C. Nakatani, C. van Leeuwen, and N. Srinivasan, “Processing statistics: an examination of focused and distributed attention using event related potentials,” Vis. Res. 85, 20–25 (2013). [CrossRef]
  13. J. Haberman and D. Whitney, “The visual system discounts emotional deviants when extracting average expression,” Atten. Percept. Psychophys. 72, 1825–1838 (2010). [CrossRef]
  14. A. Y. Leib, J. Fischer, Y. Liu, D. Whitney, and L. Robertson, “Ensemble crowd perception: a viewpoint invariant mechanism to represent average crowd identity,” J. Vis. 13(9):,424 (2013). [CrossRef]
  15. A. Y. Leib, A. M. Puri, J. Fischer, S. Bentin, D. Whitney, and L. Robertson, “Crowd perception in prosopagnosia,” Neuropsychologia 50, 1698–1707 (2012). [CrossRef]
  16. I. Kuriki, “Testing the possibility of average-color perception from multi-colored patterns,” Opt. Rev. 11, 249–257 (2004). [CrossRef]
  17. N. Demeyere, A. Rzeskiewicz, K. A. Humphreys, and G. W. Humphreys, “Automatic statistical processing of visual properties in simultanagnosia,” Neuropsychologia 46, 2861–2864 (2008). [CrossRef]
  18. L. Huang, A. Treisman, and H. Pashler, “Characterizing the limits of human visual awareness,” Science 317, 823–825 (2007). [CrossRef]
  19. S. K. Shevell and F. A. A. Kingdom, “Color in complex scenes,” Annu. Rev. Psychol. 59, 143–166 (2008). [CrossRef]
  20. K. C. McDermott and M. A. Webster, “Uniform color spaces and natural image statistics,” J. Opt. Soc. Am. A 29, A182–A187 (2012). [CrossRef]
  21. M. A. Webster, Y. Mizokami, and S. M. Webster, “Seasonal variations in the color statistics of natural images,” Network 18, 213–233 (2007). [CrossRef]
  22. M. A. Webster and J. D. Mollon, “Adaptation and the color statistics of natural images,” Vis. Res. 37, 3283–3298 (1997). [CrossRef]
  23. M. A. Webster and J. D. Mollon, “Color constancy influenced by contrast adaptation,” Nature 373, 694–698 (1995). [CrossRef]
  24. P. Kay, B. Berlin, L. Maffi, W. R. Merrifield, and R. Cook, The World Color Survey (Center for the Study of Language & Information, 2011).
  25. A. J. Calder, A. W. Young, D. I. Perrett, N. L. Etcoff, and D. Rowland, “Categorical perception of morphed facial expressions,” Visual Cogn. 3, 81–117 (1996). [CrossRef]
  26. M. Pilling, A. Wiggett, E. Ozgen, and I. R. L. Davies, “Is color ‘categorical perception’ really perceptual?” Mem. Cogn. 31, 538–551 (2003).
  27. D. Roberson, H. Pak, and J. R. Hanley, “Categorical perception of colour in the left and right visual field is verbally mediated: evidence from Korean,” Cognition 107, 752–762 (2008). [CrossRef]
  28. J. Davidoff, I. Davies, and D. Roberson, “Colour categories in a stone-age tribe,” Nature 398, 203–204 (1999). [CrossRef]
  29. C. A. Daoutis, M. Pilling, and I. R. L. Davies, “Categorical effects in visual search for colour,” Vis. Cogn. 14, 217–240 (2006). [CrossRef]
  30. E. R. Heider, “Universals in color naming and memory,” J. Exp. Psychol. 93, 10–20 (1972). [CrossRef]
  31. D. Roberson, I. Davies, and J. Davidoff, “Color categories are not universal: replications and new evidence from a stone-age culture,” J. Exp. Psychol. Gen. 129, 369–398 (2000). [CrossRef]
  32. M. Olkkonen, T. Hansen, and K. R. Gegenfurtner, “Categorical color constancy for simulated surfaces,” J. Vis. 9(12):6 (2009). [CrossRef]
  33. M. Olkkonen, C. Witzel, T. Hansen, and K. R. Gegenfurtner, “Categorical color constancy for real surfaces,” J. Vis. 10(9):16 (2010). [CrossRef]
  34. L. Parkes, J. Lund, A. Angelucci, J. A. Solomon, and M. Morgan, “Compulsory averaging of crowded orientation signals in human vision,” Nat. Neurosci. 4, 739–744 (2001). [CrossRef]
  35. C. Oriet and J. Brand, “Size averaging of irrelevant stimuli cannot be prevented,” Vis. Res. 79, 8–16 (2013). [CrossRef]
  36. D. Roberson and J. Davidoff, “The categorical perception of colors and facial expressions: the effect of verbal interference,” Mem. Cogn. 28, 977–986 (2000). [CrossRef]
  37. T. Regier, P. Kay, and R. S. Cook, “Focal colors are universal after all,” Proc. Natl. Acad. Sci. USA 102, 8386–8391 (2005). [CrossRef]
  38. A. L. Gilbert, T. Regier, P. Kay, and R. B. Ivry, “Whorf hypothesis is supported in the right visual field but not the left,” Proc. Natl. Acad. Sci. USA 103, 489–494 (2006). [CrossRef]
  39. J. Winawer, N. Witthoft, M. C. Frank, L. Wu, A. R. Wade, and L. Boroditsky, “Russian blues reveal effects of language on color discrimination,” Proc. Natl. Acad. Sci. USA 104, 7780–7785 (2007). [CrossRef]
  40. G. Thierry, P. Athanasopoulos, A. Wiggett, B. Dering, and J. R. Kuipers, “Unconscious effects of language-specific terminology on preattentive color perception,” Proc. Natl. Acad. Sci. USA 106, 4567–4570 (2009). [CrossRef]
  41. P. Athanasopoulos, “Color and bilingual cognition,” in Language and Bilingual Cognition, V. Cook and B. Bassetti, eds. (Psychology Press, 2011), pp. 241–261.
  42. A. Clifford, A. Franklin, A. Holmes, V. G. Drivonikou, E. Ozgen, and I. R. L. Davies, “Neural correlates of acquired color category effects,” Brain Cogn. 80, 126–143 (2012). [CrossRef]
  43. C. Witzel and K. R. Gegenfurtner, “Categorical sensitivity to color differences,” J. Vis. 13(7):1 (2013). [CrossRef]
  44. N. L. Komarova and K. A. Jameson, “A quantitative theory of human color choices,” PLoS One 8, e55986 (2013). [CrossRef]
  45. J. Huttenlocher, L. V. Hedges, and J. L. Vevea, “Why do categories affect stimulus judgment?” J. Exp. Psychol. Gen. 129, 220–241 (2000).
  46. S. Ishihara, Ishihara’s Test Chart for Colour Deficiency (Kanehara Trading, 1973).
  47. R. Fletcher, The City University Colour Vision Test, 2nd ed. (Keeler, 1980).
  48. D. H. Brainard, “The psychophysics toolbox,” Spat. Vis. 10, 433–436 (1997). [CrossRef]
  49. M. Kleiner, D. Brainard, and D. Pelli, “What’s new in Psychtoolbox-3?” Perception 36, 14 (2007).
  50. D. G. Pelli, “The VideoToolbox software for visual psychophysics: transforming numbers into movies,” Spat. Vis. 10, 437–442 (1997). [CrossRef]
  51. A. M. Derrington, J. Krauskopf, and P. Lennie, “Chromatic mechanisms in lateral geniculate-nucleus of macaque,” J. Physiol. 357, 241–265 (1984).
  52. J. Krauskopf, D. R. Williams, and D. W. Heeley, “Cardinal directions of color space,” Vis. Res. 22, 1123–1131 (1982). [CrossRef]
  53. B. Bauer, “The danger of trial-by-trial knowledge of results in perceptual averaging studies,” Atten. Percept. Psychophys. 71, 655–665 (2009). [CrossRef]
  54. L. E. Crawford, J. Huttenlocher, and P. H. Engebretson, “Category effects on estimates of stimuli: perception or reconstruction?” Psychol. Sci. 11, 280–284 (2000). [CrossRef]
  55. J. E. Corbett and C. Oriet, “The whole is indeed more than the sum of its parts: perceptual averaging in the absence of individual item representation,” Acta Psychol. 138, 289–301 (2011). [CrossRef]
  56. A. P. Marchant and J. W. de Fockert, “Priming by the mean representation of a set,” Q. J. Exp. Psychol. 62, 1889–1895 (2009). [CrossRef]
  57. T. F. Brady and G. A. Alvarez, “Hierarchical encoding in visual working memory: ensemble statistics bias memory for individual items,” Psychol. Sci. 22, 384–392 (2011). [CrossRef]
  58. G. A. Collier, “Further evidence for universal color categories,” Language 52, 884–890 (1976).
  59. P. Kay and T. Regier, “Resolving the question of color naming universals,” Proc. Natl. Acad. Sci. USA 100, 9085–9089 (2003). [CrossRef]
  60. D. T. Lindsey and A. M. Brown, “World color survey color naming reveals universal motifs and their within-language diversity,” Proc. Natl. Acad. Sci. USA 106, 19785–19790 (2009). [CrossRef]
  61. R. O. Brown and D. I. A. MacLeod, “Color appearance depends on the variance of surround colors,” Curr. Biol. 7, 844–849 (1997). [CrossRef]
  62. J. Romero, E. Hita, and L. J. Delbarco, “A comparative-study of successive and simultaneous methods in color discrimination,” Vis. Res. 26, 471–476 (1986). [CrossRef]
  63. K. Uchikawa and M. Ikeda, “Temporal Deterioration of wavelength discrimination with successive comparison method,” Vis. Res. 21, 591–595 (1981). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited