OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1007–1012

Topological phase structure of vector vortex beams

C. E. R. Souza, J. A. O. Huguenin, and A. Z. Khoury  »View Author Affiliations


JOSA A, Vol. 31, Issue 5, pp. 1007-1012 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001007


View Full Text Article

Enhanced HTML    Acrobat PDF (517 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The topological phase acquired by vector vortex optical beams is investigated. Under local unitary operations on their polarization and transverse degrees of freedom, the vector vortices can only acquire discrete geometric phase values, 0 or π, associated with closed paths belonging to different homotopy classes on the SO(3) manifold. These discrete values are demonstrated through interferometric measurements, and the spin-orbit mode separability is associated to the visibility of the interference patterns. The local unitary operations performed on the vector vortices involved both polarization and transverse mode transformations with birefringent wave plates and astigmatic mode converters. The experimental results agree with our theoretical simulations and generalize our previous results obtained with polarization transformations only.

© 2014 Optical Society of America

OCIS Codes
(270.0270) Quantum optics : Quantum optics
(080.4865) Geometric optics : Optical vortices
(270.5565) Quantum optics : Quantum communications

ToC Category:
Quantum Optics

History
Original Manuscript: January 10, 2014
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 18, 2014
Published: April 9, 2014

Citation
C. E. R. Souza, J. A. O. Huguenin, and A. Z. Khoury, "Topological phase structure of vector vortex beams," J. Opt. Soc. Am. A 31, 1007-1012 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-5-1007


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. Pancharatnam, “Generalized theory of interference and its application,” Proc. Indian Acad. Sci. A 44, 247–262 (1956).
  2. S. Pancharatnam, Collected Works of S. Pancharatnam (Oxford University, 1975).
  3. Y. Aharonov and D. Bohm, “Significance of electromagnetic potentials in the quantum theory,” Phys. Rev. 115, 485–491 (1959). [CrossRef]
  4. M. V. Berry, “Quantal phase-factors accompanying adiabatic changes,” Proc. R. Soc. A 392, 45–57 (1984). [CrossRef]
  5. J. A. Jones, V. Vedral, A. Ekert, and G. Castagnoli, “Geometric quantum computation using nuclear magnetic resonance,” Nature (London) 403, 869–871 (2000). [CrossRef]
  6. L.-M. Duan, J. I. Cirac, and P. Zoller, “Geometric manipulation of trapped ions for quantum computation,” Science 292, 1695–1697 (2001). [CrossRef]
  7. J.-Q. Zhang, Y.-F. Yu, and Z.-M. Zhang, “Unconventional geometric phase gate with two nonidentical quantum dots trapped in a photonic crystal cavity,” J. Opt. Soc. Am. B 28, 1959–1963 (2011). [CrossRef]
  8. S. J. van Enk, “Geometric phase, transformations of Gaussian light beams and angular momentum transfer,” Opt. Commun. 102, 59–64 (1993). [CrossRef]
  9. M. J. Padgett and J. Courtial, “Poincaré-sphere equivalent for light beams containing orbital angular momentum,” Opt. Lett. 24, 430–432 (1999). [CrossRef]
  10. E. J. Galvez, P. R. Crawford, H. I. Sztul, M. J. Pysher, P. J. Haglin, and R. E. Williams, “Geometric phase associated with mode transformations of optical beams bearing orbital angular momentum,” Phys. Rev. Lett. 90, 203901 (2003). [CrossRef]
  11. P. Kurzynowski, W. A. Woźniak, and M. Szarycz, “Geometric phase: two triangles on the Poincar sphere,” J. Opt. Soc. Am. A 28, 475–482 (2011). [CrossRef]
  12. E. Sjöqvist, “Geometric phase for entangled spin pairs,” Phys. Rev. A 62, 022109 (2000). [CrossRef]
  13. B. Hessmo and E. Sjöqvist, “Quantal phase for nonmaximally entangled photons,” Phys. Rev. A 62, 062301 (2000). [CrossRef]
  14. D. M. Tong, E. Sjöqvist, L. C. Kwek, C. H. Oh, and M. Ericsson, “Relation between geometric phases of entangled bipartite systems and their subsystems,” Phys. Rev. A 68, 022106 (2003). [CrossRef]
  15. E. Sjöqvist, “Entanglement-induced geometric phase of quantum states,” Phys. Lett. A 374, 1431–1433 (2010). [CrossRef]
  16. S. A. Schulz, T. Machula, E. Karimi, and R. W. Boyd, “Integrated multi vector vortex beam generator,” Opt. Express 21, 16130–16141 (2013). [CrossRef]
  17. F. Gori, “Polarization basis for vortex beams,” J. Opt. Soc. Am. A 18, 1612–1617 (2001). [CrossRef]
  18. F. Cardano, E. Karimi, S. Slussarenko, L. Marrucci, C. de Lisio, and E. Santamato, “Polarization pattern of vector vortex beams generated by q-plates with different topological charges,” Appl. Opt. 51, C1–C6 (2012). [CrossRef]
  19. L. Aolita and S. P. Walborn, “Quantum communication without alignment using multiple-qubit single-photon states,” Phys. Rev. Lett. 98, 100501 (2007). [CrossRef]
  20. C. E. R. Souza, C. V. S. Borges, A. Z. Khoury, J. A. O. Huguenin, L. Aolita, and S. P. Walborn, “Quantum key distribution without a shared reference frame,” Phys. Rev. A 77, 032345 (2008). [CrossRef]
  21. V. D’Ambrosio, E. Nagali, S. P. Walborn, L. Aolita, S. Slussarenko, L. Marrucci, and F. Sciarrino, “Complete experimental toolbox for alignment-free quantum communication,” Nat. Commun. 3, 961–968 (2012). [CrossRef]
  22. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011). [CrossRef]
  23. G. Milione, S. Evans, D. A. Nolan, and R. R. Alfano, “Higher order Pancharatnam–Berry phase and the angular momentum of light,” Phys. Rev. Lett. 108, 190401 (2012). [CrossRef]
  24. P. Milman and R. Mosseri, “Topological phase for entangled two-qubit states,” Phys. Rev. Lett. 90, 230403 (2003). [CrossRef]
  25. P. Milman, “Phase dynamics of entangled qubits,” Phys. Rev. A 73, 062118 (2006). [CrossRef]
  26. R. Mosseri and R. Dandoloff, “Geometry of entangled states, Bloch spheres and Hopf fibrations,” J. Phys. A 34, 10243–10252 (2001). [CrossRef]
  27. C. E. R. Souza, J. A. O. Huguenin, P. Milman, and A. Z. Khoury, “Topological phase for spin-orbit transformations on a laser beam,” Phys. Rev. Lett. 99, 160401 (2007). [CrossRef]
  28. J. Du, J. Zhu, M. Shi, X. Peng, and D. Suter, “Experimental observation of a topological phase in the maximally entangled state of a pair of qubits,” Phys. Rev. A 76, 042121 (2007). [CrossRef]
  29. L. E. Oxman and A. Z. Khoury, “Fractional topological phase for entangled qudits,” Phys. Rev. Lett. 106, 240503 (2011). [CrossRef]
  30. M. Johansson, M. Ericsson, K. Singh, E. Sjöqvist, and M. S. Williamson, “Topological phases and multiqubit entanglement,” Phys. Rev. A 85, 032112 (2012). [CrossRef]
  31. A. Z. Khoury, L. E. Oxman, B. Marques, A. Matoso, and S. Pádua, “Fractional topological phase on spatially encoded photonic qudits,” Phys. Rev. A 87, 042113 (2013). [CrossRef]
  32. M. Johansson, A. Z. Khoury, K. Singh, and E. Sjöqvist, “Three-qubit topological phase on entangled photon pairs,” Phys. Rev. A 87, 042112 (2013). [CrossRef]
  33. A. E. Siegman, Lasers (University Science Books, 1986).
  34. A. Yariv, Quantum Electronics, 3rd ed. (Wiley, 1988).
  35. C. Gabriel, A. Aiello, W. Zhong, T. G. Euser, N. Y. Joly, P. Banzer, M. Fortsch, D. Elser, U. L. Andersen, C. Marquardt, P. S. J. Russell, and G. Leuchs, “Entangling different degrees of freedom by quadrature squeezing cylindrically polarized modes,” Phys. Rev. Lett. 106, 060502 (2011). [CrossRef]
  36. R. J. C. Spreeuw, “A classical analogy of entanglement,” Found. Phys. 28, 361–374 (1998). [CrossRef]
  37. R. J. C. Spreeuw, “Classical wave-optics analogy of quantum-information processing,” Phys. Rev. A 63, 062302 (2001). [CrossRef]
  38. C. V. S. Borges, M. Hor-Meyll, J. A. O. Huguenin, and A. Z. Khoury, “Bell-like inequality for the spin-orbit separability of a laser beam,” Phys. Rev. A 82, 033833 (2010). [CrossRef]
  39. L. Chen and W. She, “Single-photon spin-orbit entanglement violating a Bell-like inequality,” J. Opt. Soc. Am. B 27, A7–A10 (2010). [CrossRef]
  40. E. Karimi, J. Leach, S. Slussarenko, B. Piccirillo, L. Marrucci, L. Chen, W. She, S. Franke-Arnold, M. J. Padgett, and E. Santamato, “Spin-orbit hybrid entanglement of photons and quantum contextuality,” Phys. Rev. A 82, 022115 (2010). [CrossRef]
  41. K. H. Kagalwala, G. Di Giuseppe, A. F. Abouraddy, and B. E. A. Saleh, “Bell’s measure in classical optical coherence,” Nat. Photonics 7, 72–78 (2013). [CrossRef]
  42. E. Abramochkin and V. Volostnikov, “Beam transformations and nontransformed beams,” Opt. Commun. 83, 123–135 (1991). [CrossRef]
  43. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre–Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  44. M. W. Beijersbergen, L. Allen, H. E. L. O. var der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  45. C. E. R. Souza and A. Z. Khoury, “A Michelson controlled-not gate with a single-lens astigmatic mode converter,” Opt. Express 18, 9207–9212 (2010). [CrossRef]
  46. W. LiMing, Z. L. Tang, and C. J. Liao, “Representation of the SO(3) group by a maximally entangled state,” Phys. Rev. A 69, 064301 (2004). [CrossRef]
  47. N. Mukunda and R. Simon, “Quantum kinematic approach to the geometric phase. I. General formalism,” Ann. Phys. 228, 205–268 (1993). [CrossRef]
  48. N. Mukunda and R. Simon, “Quantum kinematic approach to the geometric phase. II. The case of unitary group representations,” Ann. Phys. 228, 269–340 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited