OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1090–1103

Dictionaries for image and video-based face recognition [Invited]

Vishal M. Patel, Yi-Chen Chen, Rama Chellappa, and P. Jonathon Phillips  »View Author Affiliations


JOSA A, Vol. 31, Issue 5, pp. 1090-1103 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001090


View Full Text Article

Enhanced HTML    Acrobat PDF (1302 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In recent years, sparse representation and dictionary-learning-based methods have emerged as powerful tools for efficiently processing data in nontraditional ways. A particular area of promise for these theories is face recognition. In this paper, we review the role of sparse representation and dictionary learning for efficient face identification and verification. Recent face recognition algorithms from still images, videos, and ambiguously labeled imagery are reviewed. In particular, discriminative dictionary learning algorithms as well as methods based on weakly supervised learning and domain adaptation are summarized. Some of the compelling challenges and issues that confront research in face recognition using sparse representations and dictionary learning are outlined.

© 2014 Optical Society of America

OCIS Codes
(100.0100) Image processing : Image processing
(100.5010) Image processing : Pattern recognition
(150.0150) Machine vision : Machine vision
(150.1135) Machine vision : Algorithms

ToC Category:
Image Processing

History
Original Manuscript: January 6, 2014
Revised Manuscript: March 16, 2014
Manuscript Accepted: March 18, 2014
Published: April 25, 2014

Citation
Vishal M. Patel, Yi-Chen Chen, Rama Chellappa, and P. Jonathon Phillips, "Dictionaries for image and video-based face recognition [Invited]," J. Opt. Soc. Am. A 31, 1090-1103 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-5-1090


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Zhao, R. Chellappa, P. J. Phillips, and A. Rosenfeld, “Face recognition: a literature survey,” ACM Computing Surveys 35, 399–458 (2003). [CrossRef]
  2. P. J. Phillips, “Improving face recognition technology,” Computer 44, 84–86 (2011). [CrossRef]
  3. M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cogn. Neurosci. 3, 71–86 (1991).
  4. P. Belhumeur, J. Hespanda, and D. Kriegman, “Eigenfaces versus fisherfaces: recognition using class specific linear projection,” IEEE Trans. Pattern Anal. Mach. Intell. 19, 711–720 (1997). [CrossRef]
  5. K. Etemad and R. Chellappa, “Discriminant analysis for recognition of human face images,” J. Opt. Soc. Am. A 14, 1724–1733 (1997). [CrossRef]
  6. M. S. Bartlett, J. R. Movellan, and T. J. Sejnowski, “Face recognition by independent component analysis,” IEEE Trans. Neural Netw. 13, 1450–1464 (2002). [CrossRef]
  7. J. Wright, A. Y. Yang, A. A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 210–227 (2009). [CrossRef]
  8. V. M. Patel, R. Chellappa, and M. Tistarelli, “Sparse representations and random projections for robust and cancelable biometrics,” in International Conference on Control, Automation, Robotics and Vision, Guangzhou, December, 2010, pp. 1–6.
  9. J. K. Pillai, V. M. Patel, R. Chellappa, and N. Ratha, “Secure and robust iris recognition using random projections and sparse representations,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 1877–1893 (2011). [CrossRef]
  10. V. M. Patel and R. Chellappa, “Sparse representations, compressive sensing and dictionaries for pattern recognition,” in Asian Conference on Pattern Recognition (ACPR), Beijing, 2010.
  11. J. Jiang, “A literature survey on domain adaptation of statistical classifiers,” (2008).
  12. K. Saenko, B. Kulis, M. Fritz, and T. Darrell, “Adapting visual category models to new domains,” in European Conference on Computer Vision (Springer-Verlag, 2010), Vol. 6314, pp. 213–226.
  13. J. Wright, Y. Ma, J. Mairal, G. Sapiro, T. S. Huang, and S. Yan, “Sparse representation for computer vision and pattern recognition,” Proc. IEEE 98, 1031–1044 (2010). [CrossRef]
  14. R. Rubinstein, A. M. Bruckstein, and M. Elad, “Dictionaries for sparse representation modeling,” Proc. IEEE 98, 1045–1057 (2010). [CrossRef]
  15. M. Elad, Sparse and Redundant Representations: From Theory to Applications in Signal and Image Processing (Springer, 2010).
  16. S. Chen, D. Donoho, and M. Saunders, “Atomic decomposition by basis pursuit,” SIAM J. Sci. Comp 20, 33–61 (1998). [CrossRef]
  17. K. Engan, S. O. Aase, and J. H. Husoy, “Method of optimal directions for frame design,” in IEEE International Conference on Acoustic, Speech, Signal Processing, Phoenix, 1999, Vol. 5, pp. 2443–2446.
  18. M. Aharon, M. Elad, and A. M. Bruckstein, “The k-svd: an algorithm for designing of overcomplete dictionaries for sparse representation,” IEEE Trans. Signal Process. 54, 4311–4322 (2006). [CrossRef]
  19. K. Etemand and R. Chellappa, “Separability-based multiscale basis selection and feature extraction for signal and image classification,” IEEE Trans. Image Process. 7, 1453–1465 (1998). [CrossRef]
  20. J. Mairal, F. Bach, and J. Ponce, “Task-driven dictionary learning,” IEEE Trans. Pattern Anal. Mach. Intell. 34, 791–804 (2012). [CrossRef]
  21. Z. Jiang, Z. Lin, and L. S. Davis, “Label consistent k-svd: learning a discriminative dictionary for recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 35, 2651–2664 (2013). [CrossRef]
  22. Q. Zhang and B. Li, “Discriminative k-svd for dictionary learning in face recognition,” in IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010.
  23. M. Yang, L. Zhang, X. Feng, and D. Zhang, “Fisher discrimination dictionary learning for sparse representation,” in International Conference on Computer Vision, Barcelona, 2011, pp. 543–550.
  24. Q. Qiu, V. M. Patel, and R. Chellappa, “Information-theoretic dictionary learning for image classification,” IEEE Trans. Pattern Anal. Mach. Intell. (to be published).
  25. H. V. Nguyen, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Design of nonlinear kernel dictionaries for object recognition,” IEEE Trans. Image Process. 22, 5123–5135 (2013). [CrossRef]
  26. A. Shrivastava, H. V. Nguyen, V. M. Patel, and R. Chellappa, “Design of nonlinear discriminative dictionaries for image classification,” in Asian Conference on Computer Vision (ACCV) (Springer-Verlag, 2013), pp. 660–674.
  27. L. Zhang, W.-D. Zhou, P.-C. Chang, J. Liu, Z. Yan, T. Wang, and F.-Z. Li, “Kernel sparse representation-based classifier,” IEEE Trans. Signal Process. 60, 1684–1695 (2012). [CrossRef]
  28. V. M. Patel, W. Tao, S. Biswas, P. J. Phillips, and R. Chellappa, “Dictionary-based face recognition under variable lighting and pose,” IEEE Trans. Inf. Forensics Secur. 7, 954–965 (2012). [CrossRef]
  29. S. Biswas, G. Aggarwal, and R. Chellappa, “Robust estimation of albedo for illumination-invariant matching and shape recovery,” IEEE Trans. Pattern Anal. Mach. Intell. 31, 884–899 (2009). [CrossRef]
  30. V. Blanz and T. Vetter, “Face recognition based on fitting a 3d morphable model,” IEEE Trans. Pattern Anal. Mach. Intell. 25, 1063–1074 (2003). [CrossRef]
  31. R. Gross, I. Matthews, J. F. Cohn, T. Kanade, and S. Baker, “Multi-PIE,” Image Vis. Comput. 28, 807–813 (2010).
  32. S. Biswas and R. Chellappa, “Pose-robust albedo estimation from a single image,” in IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010.
  33. Y.-C. Chen, C. S. Sastry, V. M. Patel, P. J. Phillips, and R. Chellappa, “In-plane rotation and scale invariant clustering using dictionaries,” IEEE Trans. Image Process. 22, 2166–2180 (2013). [CrossRef]
  34. A. S. Georghiades, P. N. Belhumeur, and D. J. Kriegman, “From few to many: illumination cone models for face recognition under variable lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell. 23, 643–660 (2001). [CrossRef]
  35. J. Wang, J. Yang, K. Yu, F. Lv, T. Huang, and Y. Gong, “Locality-constrained linear coding for image classification,” in IEEE Conference on Computer Vision and Pattern Recognition, San Francisco, 2010, pp. 3360–3367.
  36. S. Shekhar, V. M. Patel, and R. Chellappa, “Synthesis-based recognition of low resolution faces,” in International Joint Conference on Biometrics, Washington, D.C., 2011, pp. 1–6.
  37. P. J. Phillips, P. J. Flynn, T. Scruggs, K. W. Bowyer, J. Chang, K. Hoffman, J. Marques, J. Min, and W. Worek, “Overview of the face recognition grand challenge,” in IEEE Conference on Computer Vision and Pattern Recognition, San Diego, 2005, Vol. 1, pp. 947–954.
  38. B. Li, H. Chang, S. Shan, and X. Chen, “Low-resolution face recognition via coupled locality preserving mappings,” IEEE Signal Process. Lett. 17, 20–23 (2010). [CrossRef]
  39. S. Taheri, V. M. Patel, and R. Chellappa, “Component-based recognition of faces and facial expressions,” in IEEE Transactions on Affective Computing, October, 2013.
  40. E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component analysis?” J. ACM 58(3), 1–37 (2011). [CrossRef]
  41. P. Lucey, J. F. Cohn, T. Kanade, J. Saragih, Z. Ambadar, and I. Matthews, “The extended cohn-kanade dataset (ck+): a complete dataset for action unit and emotion-specified expression,” in IEEE Conference on Computer Vision and Pattern Recognition Workshops, San Francisco, 2010, pp. 94–101.
  42. P. J. Phillips, “Matching pursuit filters applied to face identification,” IEEE Trans. Image Process. 7, 1150–1164 (1998). [CrossRef]
  43. Y.-C. Chen, V. M. Patel, P. J. Phillips, and R. Chellappa, “Dictionary-based face recognition from video,” in European Conference on Computer Vision, October 2012.
  44. P. Viola and M. Jones, “Rapid object detection using a boosted cascade of simple features,” In IEEE Conference on Computer Vision and Pattern Recognition, Hilton Head, June, 2001, pp. 511–518.
  45. Y.-C. Chen, V. M. Patel, S. Shekhar, R. Chellappa, and P. J. Phillips, “Video-based face recognition via joint sparse representation,” in IEEE International Conference on Automatic Face and Gesture Recognition, Shanghai, 2013, pp. 1–8.
  46. S. Shekhar, V. M. Patel, N. M. Nasrabadi, and R. Chellappa, “Joint sparse representation for robust multimodal biometrics recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 36, 113–126 (2014). [CrossRef]
  47. A. J. O’Toole, J. Harms, S. L. Snow, D. R. Hurst, M. R. Pappas, J. H. Ayyad, and H. Abdi, “Recognizing people from dynamic and static faces and bodies: dissecting identity with a fusion approach,” Vis. Res. 51, 74–83 (2011). [CrossRef]
  48. P. K. Turaga, A. Veeraraghavan, A. Srivastava, and R. Chellappa, “Statistical computations on Grassmann and Stiefel manifolds for image and video-based recognition,” IEEE Trans. Pattern Anal. Mach. Intell. 33, 2273–2286 (2011). [CrossRef]
  49. P. K. Turaga, A. Veeraraghavan, and R. Chellappa, “Statistical analysis on Stiefel and Grassmann manifolds with applications in computer vision,” in IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, 2008, pp. 1–8.
  50. Y. Hu, A. S. Mian, and R. Owens, “Sparse approximated nearest points for image set classification,” in Conference on Computer Vision and Pattern Recognition (IEEE, 2011), pp. 27–40.
  51. P. Jonathon Phillips, P. J. Flynn, J. Ross Beveridge, W. Todd Scruggs, A. J. O’Toole, D. Bolme, K. W. Bowyer, B. A. Draper, G. H. Givens, Y. M. Lui, H. Sahibzada, J. A. Scallan, and S. Weimer, “Overview of the multiple biometrics grand challenge,” in International Conference on Biometrics (Springer, 2009), pp. 705–714.
  52. Information Technology Laboratory, NIST. Multiple biomertic grand challenge, http://www.nist.gov/itl/iad/ig/mbgc.cfm .
  53. Y.-C. Chen, V. M. Patel, J. K. Pillai, R. Chellappa, and P. J. Phillips, “Dictionary learning from ambiguously labeled data,” in IEEE Conference on Computer Vision and Pattern Recognition, Portland, Oregon, 2013, pp. 353–360.
  54. A. Shrivastava, J. K. Pillai, V. M. Patel, and R. Chellappa, “Learning discriminative dictionaries with partially labeled data,” in IEEE International Conference on Image ProcessingOrlando, 2012, pp. 3113–3116.
  55. Q. Qiu, V. M. Patel, P. Turaga, and R. Chellappa, “Domain adaptive dictionary learning,” in European Conference on Computer Vision (2012), Vol. 7575, pp. 631–645.
  56. S. Shekhar, V. M. Patel, H. V. Nguyen, and R. Chellappa, “Generalized domain-adaptive dictionaries,” in Conference on Computer Vision and Pattern Recognition (IEEE, 2013), pp. 361–368.
  57. J. Ni, Q. Qiu, and R. Chellappa, “Subspace interpolation via dictionary learning for unsupervised domain adaptation,” in Computer Vision and Pattern Recognition (CVPR), Washington, D.C., 2013, pp. 692–699.
  58. Y.-C. Chen, V. M. Patel, R. Chellappa, and P. J. Phillips, “Salient views and view-dependent dictionaries for object recognition,” Comput. Vis. Image Underst. (to be published).
  59. M. Elad, “Sparse and redundant representation modeling-what next?” IEEE Signal Process. Lett. 19, 922–928 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited