OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 1104–1111

Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains

Inkyu Moon, Faliu Yi, Yeon H. Lee, and Bahram Javidi  »View Author Affiliations

JOSA A, Vol. 31, Issue 5, pp. 1104-1111 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1746 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this work, we evaluate the avalanche effect and bit independence properties of the double random phase encoding (DRPE) algorithm in the Fourier and Fresnel domains. Experimental results show that DRPE has excellent bit independence characteristics in both the Fourier and Fresnel domains. However, DRPE achieves better avalanche effect results in the Fresnel domain than in the Fourier domain. DRPE gives especially poor avalanche effect results in the Fourier domain when only one bit is changed in the plaintext or in the encryption key. Despite this, DRPE shows satisfactory avalanche effect results in the Fresnel domain when any other number of bits changes in the plaintext or in the encryption key. To the best of our knowledge, this is the first report on the avalanche effect and bit independence behaviors of optical encryption approaches for bit units.

© 2014 Optical Society of America

OCIS Codes
(200.3050) Optics in computing : Information processing
(060.4785) Fiber optics and optical communications : Optical security and encryption
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Fiber Optics and Optical Communications

Original Manuscript: January 10, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 3, 2014
Published: April 29, 2014

Inkyu Moon, Faliu Yi, Yeon H. Lee, and Bahram Javidi, "Avalanche and bit independence characteristics of double random phase encoding in the Fourier and Fresnel domains," J. Opt. Soc. Am. A 31, 1104-1111 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Stallings, Cryptography and Network Security Principles and Practice (Prentice Hall, 2011).
  2. C. Blondeau and K. Nyberg, “New links between differential and linear cryptanalysis,” Lect. Notes Comput. Sci. 7881, 388–404 (2013). [CrossRef]
  3. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  4. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am. A 15, 2629–2638 (1998). [CrossRef]
  5. D. Monaghan, U. Gopinathan, T. Naughton, and J. Sheridan, “Key-space analysis of double random phase encryption technique,” Appl. Opt. 46, 6641–6647 (2007). [CrossRef]
  6. N. Towghi, B. Javidi, and Z. Luo, “Fully phase encrypted image processor,” J. Opt. Soc. Am. A 16, 1915–1927 (1999). [CrossRef]
  7. A. Alfalou and A. Mansour, “Double random phase encryption scheme to multiplex and simultaneous encode multiple images,” Appl. Opt. 48, 5933–5947 (2009). [CrossRef]
  8. O. Matoba, T. Nomura, E. Pérez-Cabré, M. Millan, and B. Javidi, “Optical techniques for information security,” Proc. IEEE 97, 1128–1148 (2009). [CrossRef]
  9. M. Toishi, M. Hara, K. Tanaka, T. Tanaka, and K. Watanabe, “Novel encryption method using multi reference patterns in coaxial holographic data storage,” Jpn. J. Appl. Phys. 46, 3775 (2007). [CrossRef]
  10. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999). [CrossRef]
  11. X. Tan, O. Matoba, Y. Okada-Shudo, M. Ide, T. Shimura, and K. Kuroda, “Secure optical memory system with polarization encryption,” Appl. Opt. 40, 2310–2315 (2001). [CrossRef]
  12. J. Barrera, R. Henao, M. Tebaldi, R. Torroba, and N. Bolognini, “Multiplexing encryption-decryption via lateral shifting of a random phase mask,” Opt. Commun. 259, 532–536 (2006). [CrossRef]
  13. P. Clemente, V. Durán, V. Torres-Company, E. Tajahuerce, and J. Lancis, “Optical encryption based on computational ghost imaging,” Opt. Lett. 35, 2391–2393 (2010). [CrossRef]
  14. W. Chen, X. Chen, and C. Sheppard, “Optical image encryption based on diffractive imaging,” Opt. Lett. 35, 3817–3819 (2010). [CrossRef]
  15. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000). [CrossRef]
  16. T. Naughton, B. Hennelly, and T. Dowling, “Introducing secure modes of operation for optical encryption,” J. Opt. Soc. Am. A 25, 2608–2617 (2008). [CrossRef]
  17. E. Pérez-Cabré, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011). [CrossRef]
  18. S. Kishk and B. Javidi, “3D object watermarking by a 3D hidden object,” Opt. Express 11, 874–888 (2003). [CrossRef]
  19. Y. Hayasaki, Y. Matsuba, A. Nagaoka, H. Yamamoto, and N. Nishida, “Hiding an image with a light-scattering medium and use of a contrast-discrimination method for readout,” Appl. Opt. 43, 1552–1558 (2004). [CrossRef]
  20. Y. Sheng, Z. Xin, M. Alam, L. Xin, and L. Xiao-Feng, “Information hiding based on double random-phase encoding and public-key cryptography,” Opt. Express 17, 3270–3284 (2009). [CrossRef]
  21. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000). [CrossRef]
  22. H. Kim, D. Kim, and Y. Lee, “Encryption of digital hologram of 3-D object by virtual optics,” Opt. Express 12, 4912–4921 (2004). [CrossRef]
  23. P. Kumar, A. Kumar, J. Joseph, and K. Singh, “Impulse attack free double-random-phase encryption scheme with randomized lens-phase functions,” Opt. Lett. 34, 331–333 (2009). [CrossRef]
  24. H. Tashima, M. Takeda, H. Suzuki, and T. Obi, “Known plaintext attack on double random phase encoding using fingerprint as key and a method for avoiding the attack,” Opt. Express 18, 13772–13781 (2010). [CrossRef]
  25. Y. Frauel, A. Castro, T. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  26. Y. Zhang, D. Xiao, W. Wen, and H. Liu, “Vulnerability to chosen-plaintext attack of a general optical encryption model with the architecture of scrambling-then-double random phase encoding,” Opt. Lett. 38, 4506–4509 (2013). [CrossRef]
  27. A. Carnicer, M. Montes-Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of optical encryption schemes based on double-random-phase keys,” Opt. Lett. 30, 1644–1646 (2005). [CrossRef]
  28. H. Feistel, “Cryptography and computer privacy,” Sci. Am. 228, 15–23 (1973). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited