OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 914–919

Diffraction integral and propagation of Hermite–Gaussian modes in a linear refractive index medium

A. A. Kovalev, V. V. Kotlyar, and S. G. Zaskanov  »View Author Affiliations


JOSA A, Vol. 31, Issue 5, pp. 914-919 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000914


View Full Text Article

Enhanced HTML    Acrobat PDF (503 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We derive a diffraction integral to describe the paraxial propagation of an optical beam in a graded index medium with the permittivity linearly varying with the transverse coordinate. This integral transformation is irreducible to the familiar ABCD transformation. The form of the integral transformation suggests that, unlike a straight path in a homogeneous space, any paraxial optical beam will travel on a parabola bent toward the denser medium. By way of illustration, an explicit expression for the complex amplitude of a Hermite–Gaussian beam in the linear index medium is derived.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(350.5500) Other areas of optics : Propagation
(260.2710) Physical optics : Inhomogeneous optical media

ToC Category:
Physical Optics

History
Original Manuscript: December 19, 2013
Revised Manuscript: March 4, 2014
Manuscript Accepted: March 4, 2014
Published: April 8, 2014

Citation
A. A. Kovalev, V. V. Kotlyar, and S. G. Zaskanov, "Diffraction integral and propagation of Hermite–Gaussian modes in a linear refractive index medium," J. Opt. Soc. Am. A 31, 914-919 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-5-914


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. A. Stratton, Electromagnetic Theory (McGraw-Hill, 1941).
  2. R. K. Luneburg, Mathematical Theory of Optics (University of California, 1966).
  3. Y. Zhang, L. Wang, and C. Zheng, “Vector propagation of radially polarized Gaussian beams diffracted by an axicon,” J. Opt. Soc. Am. A 22, 2542–2546 (2005). [CrossRef]
  4. A. E. Siegman, Lasers (University Science, 1986).
  5. F. Gori, “Why is the Fresnel transform so little known?” in Current Trends in Optics, J. C. Dainty, ed. (Academic, 1994), pp. 140–148.
  6. H. Ozaktas, A. Koç, I. Sari, and M. Kutay, “Efficient computation of quadratic-phase integrals in optics,” Opt. Lett. 31, 35–37 (2006). [CrossRef]
  7. A. Koç, H. Ozaktas, and L. Hesselink, “Fast and accurate computation of two-dimensional non-separable quadratic-phase integrals,” J. Opt. Soc. Am. A 27, 1288–1302 (2010). [CrossRef]
  8. S. N. Khonina, A. S. Striletz, A. A. Kovalev, and V. V. Kotlyar, “Propagation of laser vortex beams in a parabolic optical fiber,” Proc. SPIE 7523, 7523B (2009).
  9. M. Bandres and J. Gutiérrez-Vega, “Airy-Gauss beams and their transformation by paraxial optical systems,” Opt. Express 15, 16719–16728 (2007). [CrossRef]
  10. N. K. Efremidis, “Airy trajectory engineering in dynamic linear index potentials,” Opt. Lett. 36, 3006–3008 (2011). [CrossRef]
  11. L. W. Casperson, “Gaussian light beams in inhomogeneous media,” Appl. Opt. 12, 2434–2441 (1973). [CrossRef]
  12. E. G. Kalnins and W. Miller, “Lie theory and separation of variables. 5. The equations iUt + Uxx = 0 and iUt +Uxx−c/x2U = 0,” J. Math. Phys. 15, 1728–1737 (1974). [CrossRef]
  13. M. V. Berry and N. L. Balazs, “Nonspreading wave packets,” Am. J. Phys. 47, 264–267 (1979). [CrossRef]
  14. Zh. Ye, S. Liu, C. Lou, P. Zhang, Y. Hu, D. Song, J. Zhao, and Z. Chen, “Acceleration control of Airy beams with optically induced refractive-index gradient,” Opt. Lett. 36, 3230–3232 (2011). [CrossRef]
  15. C. Bernardini, F. Gori, and M. Santarsiero, “Converting states of a particle under uniform or elastic forces into free particle states,” Eur. J. Phys. 16, 58–62 (1995). [CrossRef]
  16. F. Gori, M. Santarsiero, R. Borghi, and G. Guattari, “The general wavefunction for a particle under uniform force,” Eur. J. Phys. 20, 477–482 (1999). [CrossRef]
  17. M. Born and E. Wolf, Principles of Optics (Pergamon, 1968), Chap. 1.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited