OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 5 — May. 1, 2014
  • pp: 957–963

Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light

Nikhil Naik, Christopher Barsi, Andreas Velten, and Ramesh Raskar  »View Author Affiliations


JOSA A, Vol. 31, Issue 5, pp. 957-963 (2014)
http://dx.doi.org/10.1364/JOSAA.31.000957


View Full Text Article

Enhanced HTML    Acrobat PDF (1012 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Imaging through complex media is a well-known challenge, as scattering distorts a signal and invalidates imaging equations. For coherent imaging, the input field can be reconstructed using phase conjugation or knowledge of the complex transmission matrix. However, for incoherent light, wave interference methods are limited to small viewing angles. On the other hand, time-resolved methods do not rely on signal or object phase correlations, making them suitable for reconstructing wide-angle, larger-scale objects. Previously, a time-resolved technique was demonstrated for uniformly reflecting objects. Here, we generalize the technique to reconstruct the spatially varying reflectance of shapes hidden by angle-dependent diffuse layers. The technique is a noninvasive method of imaging three-dimensional objects without relying on coherence. For a given diffuser, ultrafast measurements are used in a convex optimization program to reconstruct a wide-angle, three-dimensional reflectance function. The method has potential use for biological imaging and material characterization.

© 2014 Optical Society of America

OCIS Codes
(170.6920) Medical optics and biotechnology : Time-resolved imaging
(290.0290) Scattering : Scattering
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

History
Original Manuscript: February 7, 2014
Manuscript Accepted: March 1, 2014
Published: April 8, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Citation
Nikhil Naik, Christopher Barsi, Andreas Velten, and Ramesh Raskar, "Estimating wide-angle, spatially varying reflectance using time-resolved inversion of backscattered light," J. Opt. Soc. Am. A 31, 957-963 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-5-957


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008). [CrossRef]
  2. C. L. Hsieh, Y. Pu, R. Grange, G. Laporte, and D. Psaltis, “Imaging through turbid layers by scanning the phase conjugated second harmonic radiation from a nanoparticle,” Opt. Express 18, 20723–20731 (2010). [CrossRef]
  3. X. Xu, H. Liu, and L. V. Wang, “Time-reversed ultrasonically encoded optical focusing into scattering media,” Nat. Photonics 5, 154–157 (2011). [CrossRef]
  4. Y. M. Wang, B. Judkewitz, C. A. DiMarzio, and C. Yang, “Deep-tissue focal fluorescence imaging with digitally time-reversed ultrasound-encoded light,” Nat. Commun. 3, 928 (2012). [CrossRef]
  5. K. Si, R. Fiolka, and M. Cui, “Fluorescence imaging beyond the ballistic regime by ultrasound-pulse-guided digital phase conjugation,” Nat. Photonics 6, 657–661 (2012). [CrossRef]
  6. I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990). [CrossRef]
  7. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, and S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef]
  8. I. M. Vellekoop and A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef]
  9. S. Popoff, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Image transmission through an opaque material,” Nat. Commun. 1, 81 (2010). [CrossRef]
  10. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  11. F. van Beijnum, E. G. van Putten, A. Lagendijk, and A. P. Mosk, “Frequency bandwidth of light focused through turbid media,” Opt. Lett. 36, 373–375 (2011). [CrossRef]
  12. O. Katz, E. Small, and Y. Silberberg, “Looking around corners and through thin turbid layers in real time with scattered incoherent light,” Nat. Photonics 6, 549–553 (2012). [CrossRef]
  13. J. Bertolotti, E. G. van Putten, C. Blum, A. Lagendijk, W. L. Vos, and A. P. Mosk, “Non-invasive imaging through opaque scattering layers,” Nature 491, 232–234 (2012). [CrossRef]
  14. I. M. Vellekoop and C. M. Aegerter, “Scattered light fluorescence microscopy: imaging through turbid layers,” Opt. Lett. 35, 1245–1247 (2010). [CrossRef]
  15. S. Fend, C. Kane, A. Lee, and D. A. Stone, “Correlations and fluctuations of coherent wave transmission through disordered media,” Phys. Rev. Lett. 61, 834–837 (1988). [CrossRef]
  16. I. Freund, M. Rosenbluh, and S. Feng, “Memory effects in propagation of optical waves through disordered media,” Phys. Rev. Lett. 61, 2328–2331 (1988). [CrossRef]
  17. I. Freund, “Image reconstruction through multiple scattering media,” Opt. Commun. 86, 216–227 (1991). [CrossRef]
  18. G. W. Kamerman, The Infrared and Electro-Optical System Handbook (SPIE, 1993).
  19. L. Wang, P. P. Ho, C. Liu, G. Zhang, and R. R. Alfano, “Ballistic 2-d imaging through scattering walls using an ultrafast optical Kerr gate,” Science 253, 769–771 (1991). [CrossRef]
  20. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991). [CrossRef]
  21. O. Katz, E. Small, Y. Bromberg, and Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011). [CrossRef]
  22. D. Wu, G. Wetzstein, C. Barsi, T. Willwacher, Q. Dai, and R. Raskar, “Ultra-fast lensless computational imaging through 5D frequency analysis of time-resolved light transport,” Int. J. Comput. Vis., doi: 10.1007/s11263-013-0686-0 (in press). [CrossRef]
  23. A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G. Bawendi, and R. Raskar, “Recovering three-dimensional shape around a corner using ultrafast time-of-flight imaging,” Nat. Commun. 3, 745 (2012). [CrossRef]
  24. O. Gupta, T. Willwacher, A. Velten, A. Veeraraghavan, and R. Raskar, “Reconstruction of hidden 3D shapes using diffuse reflections,” Opt. Express 20, 19096–19108 (2012). [CrossRef]
  25. P. Sen, B. Chen, G. Garg, S. R. Marschner, M. Horowitz, M. Levoy, and H. P. A. Lensch, “Dual photography,” ACM Trans. Graph. 24, 745–755 (2005). [CrossRef]
  26. J. M. Schmitt, S. H. Xiang, and K. M. Yung, “Speckle in optical coherence tomography,” J. Biomed. Opt. 4, 95–105 (1999). [CrossRef]
  27. A. Szameit, Y. Shechtman, E. Osherovich, E. Bullkich, P. Sidorenko, H. Dana, S. Steiner, E. B. Kley, S. Gazit, T. Cohen-Hyams, S. Shoham, M. Zibulevsky, I. Yavneh, Y. C. Eldar, O. Cohen, and M. Segev, “Sparsity-based single-shot subwavelength coherent diffractive imaging,” Nat. Mater. 11, 455–459 (2012). [CrossRef]
  28. S. B. Colak, D. G. Papaioannou, G. W. ’t Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen, and N. A. A. J. van Asten, “Tomographic image reconstruction from optical projections in light-diffusing media,” Appl. Opt. 36, 180–213 (1997). [CrossRef]
  29. D. V. Dylov and J. W. Fleischer, “Nonlinear self-filtering of noisy images via dynamical stochastic resonance,” Nat. Photonics 4, 323–328 (2010). [CrossRef]
  30. E. Betzig, G. H. Patterson, R. Sougrat, O. Wolf Lindwasser, S. Olenych, J. S. Bonifacine, M. W. Davidson, J. Libbincot-Schwartz, and H. F. Hess, “Imaging intracellular fluorescent proteins at nanometer resolution,” Science 313, 1642–1645 (2006). [CrossRef]
  31. M. J. Rust, M. Bates, and X. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy,” Nat. Methods 3, 793–796 (2006). [CrossRef]
  32. K. Goda, A. Ayazi, D. R. Gossett, J. Sadasivam, C. K. Lonappan, E. Sollier, A. M. Fard, S. C. Hur, J. Adam, C. Murray, C. Wang, N. Brackbill, D. Di Carlo, and B. Jalali, “High-throughput single-microparticle imaging flow analyzer,” Proc. Natl. Acad. Sci. USA 109, 11630–11635 (2012). [CrossRef]
  33. S. S. Gorthi, D. Schaak, and E. Schonbrun, “Fluorescence imaging of flowing cells using a temporally coded excitation,” Opt. Express 21, 5164–5170 (2013). [CrossRef]
  34. A. T. N. Kumar, S. B. Raymond, A. K. Dunn, B. J. Bacskai, and D. A. Boas, “A time domain fluorescence tomography system for small animal imaging,” IEEE Trans. Med. Imaging 27, 1152–1163 (2008). [CrossRef]
  35. K. Chung, J. Wallace, S.-Y. Kim, S. Kalyanasundaram, A. S. Andalman, T. J. Davidson, J. J. Mirzabekov, K. A. Zalocusky, J. Mattis, A. K. Denisin, S. Pak, H. Bernstein, C. Ramakrishnan, L. Grosenick, V. Gradinaru, and K. Deisseroth, “Structural and molecular interrogation of intact biological systems,” Nature 497, 332–337 (2013). [CrossRef]
  36. N. Naik, S. Zhao, A. Velten, R. Raskar, and K. Bala, “Single view reflectance capture using multiplexed scattering and time-of-flight imaging,” ACM Trans. Graph. 30, 171 (2011). [CrossRef]
  37. M. Nixon, O. Katz, E. Small, Y. Bromberg, A. A. Friesem, Y. Silberberg, and N. Davidson, “Real-time wavefront shaping through scattering media by all-optical feedback,” Nat. Photonics 7, 919–924 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited