Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Image formation of thick three-dimensional objects in differential-interference-contrast microscopy

Not Accessible

Your library or personal account may give you access

Abstract

The differential-interference-contrast (DIC) microscope is of widespread use in life sciences as it enables noninvasive visualization of transparent objects. The goal of this work is to model the image formation process of thick three-dimensional objects in DIC microscopy. The model is based on the principles of electromagnetic wave propagation and scattering. It simulates light propagation through the components of the DIC microscope to the image plane using a combined geometrical and physical optics approach and replicates the DIC image of the illuminated object. The model is evaluated by comparing simulated images of three-dimensional spherical objects with the recorded images of polystyrene microspheres. Our computer simulations confirm that the model captures the major DIC image characteristics of the simulated object, and it is sensitive to the defocusing effects.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Theoretical development and experimental evaluation of imaging models for differential-interference-contrast microscopy

Chrysanthe Preza, Donald L. Snyder, and José-Angel Conchello
J. Opt. Soc. Am. A 16(9) 2185-2199 (1999)

Validity criterion for the Born approximation convergence in microscopy imaging

Sigal Trattner, Micha Feigin, Hayit Greenspan, and Nir Sochen
J. Opt. Soc. Am. A 26(5) 1147-1156 (2009)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (12)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (4)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (29)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved