OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1167–1179

Electromagnetic subsurface prospecting by a multifocusing inexact Newton method within the second-order Born approximation

Marco Salucci, Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1167-1179 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001167


View Full Text Article

Enhanced HTML    Acrobat PDF (968 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper the reconstruction of a shallow buried object is addressed by an electromagnetic inverse scattering method based on combining different imaging modalities. In particular, the proposed approach integrates the inexact Newton (IN) method with an iterative multiscaling approach. Moreover, the use of the second-order Born approximation is exploited. A numerical validation is provided concerning the potentialities arising by combining the regularization capabilities of the IN method and the effectiveness of the multifocusing strategy to mitigate the nonlinearity and ill-posedness of the inversion problem. Comparisons with the standard “bare” approach in terms of accuracy, robustness, noise levels, and computational efficiency are also included.

© 2014 Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(100.6950) Image processing : Tomographic image processing
(280.0280) Remote sensing and sensors : Remote sensing and sensors
(290.3200) Scattering : Inverse scattering
(350.4010) Other areas of optics : Microwaves

ToC Category:
Imaging Systems

History
Original Manuscript: January 29, 2014
Manuscript Accepted: March 20, 2014
Published: May 7, 2014

Citation
Marco Salucci, Giacomo Oliveri, Andrea Randazzo, Matteo Pastorino, and Andrea Massa, "Electromagnetic subsurface prospecting by a multifocusing inexact Newton method within the second-order Born approximation," J. Opt. Soc. Am. A 31, 1167-1179 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1167


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. Zoughi, Microwave Nondestructive Testing and Evaluation (Kluwer Academic, 2000).
  2. M. Pastorino, Microwave Imaging (Wiley, 2010).
  3. G. C. Giakos, M. Pastorino, F. Russo, S. Chiwdhury, N. Shah, and D. Davros, “Noninvasive imaging for the new century,” IEEE Instrum. Meas. Mag. 2(2), 32–35 (1999). [CrossRef]
  4. O. Dorn and D. Lesselier, special issue on “Electromagnetic Inverse Problems: Emerging Methods and Novel Applications,” Inverse Probl. 26, 074001 (2010).
  5. M. Bertero and P. Boccacci, Introduction to Inverse Problems in Imaging (IOP, 1998).
  6. Y. J. Kim, L. Jofre, F. De Flaviis, and M. Q. Feng, “Microwave reflection tomographic array for damage detection of civil structures,” IEEE Trans. Antennas Propag. 51, 3022–3032 (2003). [CrossRef]
  7. S. Kharkovsky and R. Zoughi, “Microwave and millimeter wave nondestructive testing and evaluation: overview and recent advantages,” IEEE Instrum. Meas. Mag. 10(2), 26–38 (2007). [CrossRef]
  8. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Microwave imaging for nondestructive testing of dielectric structures: numerical simulations using an inexact Newton technique,” Mater. Eval. 65, 917–922 (2007).
  9. M. Benedetti, M. Donelli, A. Martini, M. Pastorino, A. Rosani, and A. Massa, “An innovative microwave-imaging technique for nondestructive evaluation: applications to civil structures monitoring and biological bodies inspection,” IEEE Trans. Instrum. Meas. 55, 1878–1884 (2006). [CrossRef]
  10. P. Kosmas, C. M. Rappaport, and E. Bishop, “Modeling with the FDTD method for microwave breast cancer detection,” IEEE Trans. Microw. Theory Technol. 52, 1890–1897 (2004). [CrossRef]
  11. P. Kosmas and C. M. Rappaport, “FDTD-based time reversal for microwave breast cancer detection-localization in three dimensions,” IEEE Trans. Microw. Theory Technol. 54, 1921–1927 (2006). [CrossRef]
  12. G. Bozza, M. Brignone, and M. Pastorino, “Application of the no-sampling linear sampling method for breast cancer detection,” IEEE Trans. Biomed. Eng. 57, 2525–2534 (2010). [CrossRef]
  13. C.-C. Chen, J. T. Johnson, M. Sato, and A. G. Yarovoy, special issue on “Subsurface Sensing Using Ground Penetrating Radar,” IEEE Trans. Geosci. Remote Sens. 45, 2423–2573 (2007).
  14. R. Firoozabadi, E. L. Miller, C. M. Rappaport, and A. W. Morgenthaler, “Subsurface sensing of buried objects under a randomly rough surface using scattered electromagnetic field data,” IEEE Trans. Geosci. Remote Sensing 45, 104–117 (2007). [CrossRef]
  15. T. Isernia, L. Crocco, and M. D’Urso, “New tools and series for forward and inverse scattering problems in lossy media,” IEEE Geosci. Remote Sens. Lett. 1, 327–331 (2004). [CrossRef]
  16. F. Soldovieri, O. Lopera, and S. Lambot, “Combination of advanced inversion techniques for an accurate target localization via GPR for demining applications,” IEEE Trans. Geosci. Remote Sens. 49, 451–461 (2011).
  17. I. Catapano, L. Crocco, and T. Isernia, “Improved sampling methods for shape reconstruction of 3-D buried targets,” IEEE Trans. Geosci. Remote Sensing 46, 3265–3273 (2008).
  18. A. P. Anderson and P. J. Richards, “Microwave imaging of subsurface cylindrical scatters from crosspolar backscatter,” Electron. Lett. 13, 617–619 (1977). [CrossRef]
  19. F. Soldovieri, R. Solimene, L. Lo Monte, and M. Bavusi, “Sparse reconstruction from GPR data with applications to Rebar detection,” IEEE Trans. Instrum. Meas. 60, 1070–1079 (2011). [CrossRef]
  20. T. M. Habashy and A. Abubakar, “A general framework for constraint minimization for the inversion of electromagnetic measurements,” PIER 46, 265–312 (2004).
  21. G. Oliveri, P. Rocca, and A. Massa, “A Bayesian compressive sampling-based inversion for imaging sparse scatterers,” IEEE Trans. Geosci. Remote Sens. 49, 3993–4006 (2011). [CrossRef]
  22. L. Poli, G. Oliveri, P. Rocca, and A. Massa, “Bayesian compressive sensing approaches for the reconstruction of two-dimensional sparse scatterers under TE illuminations,” IEEE Trans. Geosci. Remote Sensing 51, 2920–2936 (2013).
  23. L. Poli, G. Oliveri, F. Viani, and A. Massa, “MT-BCS-based microwave imaging approach through minimum-norm current expansion,” IEEE Trans. Antennas Propag. 61, 4722–4732 (2013). [CrossRef]
  24. G. Oliveri, L. Poli, P. Rocca, and A. Massa, “Bayesian compressive optical imaging within the Rytov approximation,” Opt. Lett. 37, 1760–1762 (2012). [CrossRef]
  25. L. Poli, G. Oliveri, and A. Massa, “Microwave imaging within the first-order Born approximation by means of the contrast-field Bayesian compressive sensing,” IEEE Trans. Antennas Propag. 60, 2865–2879 (2012). [CrossRef]
  26. T. J. Cui, W. C. Chew, A. A. Aydiner, and S. Chen, “Inverse scattering of two-dimensional dielectric objects in a lossy earth using the distorted Born iterative method,” IEEE Trans. Geosci. Remote Sens. 39, 339–346 (2001).
  27. R. Pierri and G. Leone, “Inverse scattering of dielectric cylinders by a second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 37, 374–382 (1999).
  28. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “Application of an inexact-Newton method within the second-order Born approximation to buried objects,” IEEE Geosci. Remote Sens. Lett. 4, 51–55 (2007).
  29. C. Estatico, M. Pastorino, and A. Randazzo, “An inexact-Newton method for short-range microwave imaging within the second-order Born approximation,” IEEE Trans. Geosci. Remote Sensing 43, 2593–2605 (2005).
  30. H. Harada, D. J. N. Wall, T. Takenaka, and T. Tanaka, “Conjugate gradient method applied to inverse scattering problems,” IEEE Trans. Antennas Propag. 43, 784–792 (1995). [CrossRef]
  31. T. Takenaka, H. Zhou, and T. Tanaka, “Inverse scattering for a three-dimensional object in the time domain,” J. Opt. Soc. Am. A 20, 1867–1874 (2003). [CrossRef]
  32. P. M. van Den Berg and A. Abubakar, “Contrast source inversion method: state of the art,” PIER 34, 189–218 (2001).
  33. S. Caorsi, A. Massa, M. Pastorino, and A. Randazzo, “Electromagnetic detection of dielectric scatterers using phaseless synthetic and real data and the memetic algorithm,” IEEE Trans. Geosci. Remote Sensing 41, 2745–2753 (2003).
  34. P. Rocca, G. Oliveri, and A. Massa, “Differential evolution as applied to electromagnetics,” IEEE Antennas Propag. Mag. 53(1), 38–49 (2011). [CrossRef]
  35. M. Pastorino, A. Massa, and S. Caorsi, “A microwave inverse scattering technique for image reconstruction based on a genetic algorithm,” IEEE Trans. Instrum. Meas. 49, 573–578 (2000). [CrossRef]
  36. S. Caorsi, A. Massa, and M. Pastorino, “A computational technique based on a real-coded genetic algorithm for microwave imaging purposes,” IEEE Trans. Geosci. Remote Sens. 38, 1697–1708 (2000).
  37. A. Massa, M. Pastorino, and A. Randazzo, “Reconstruction of two-dimensional buried objects by a hybrid differential evolution method,” Inverse Probl. 20, S135–S150 (2004). [CrossRef]
  38. M. Pastorino, S. Caorsi, A. Massa, and A. Randazzo, “Reconstruction algorithms for electromagnetic imaging,” IEEE Trans. Instrum. Meas. 53, 692–699 (2004). [CrossRef]
  39. A. Qing, “Dynamic differential evolution strategy and applications in electromagnetic inverse scattering problems,” IEEE Trans. Geosci. Remote Sens. 44, 116–125 (2005).
  40. A. Semnani, I. T. Rekanos, M. Kamyab, and T. G. Papadopoulos, “Two-dimensional microwave imaging based on hybrid scatterer representation and differential evolution,” IEEE Trans. Antenas Propag. 58, 3289–3298 (2010).
  41. P. Rocca, M. Benedetti, M. Donelli, D. Franceschini, and A. Massa, “Evolutionary optimization as applied to inverse scattering problems,” Inverse Probl. 25, 1–41 (2009).
  42. M. Pastorino, “Stochastic optimization methods applied to microwave imaging: a review,” IEEE Trans. Antennas Propag. 55, 538–548 (2007). [CrossRef]
  43. G. Bozza, C. Estatico, M. Pastorino, and A. Randazzo, “An inexact Newton method for microwave reconstruction of strong scatterers,” IEEE Antennas Wireless Propag. Lett. 5, 61–64 (2006). [CrossRef]
  44. C. Estatico, G. Bozza, A. Massa, M. Pastorino, and A. Randazzo, “A two-step iterative inexact-Newton method for electromagnetic imaging of dielectric structures from real data,” Inverse Probl. 21, S81–S94 (2005). [CrossRef]
  45. G. Bozza, C. Estatico, A. Massa, M. Pastorino, and A. Randazzo, “Short-range image-based method for the inspection of strong scatterers using microwaves,” IEEE Trans. Instrum. Meas. 56, 1181–1188 (2007). [CrossRef]
  46. G. Bozza and M. Pastorino, “An inexact Newton-based approach to microwave imaging within the contrast source formulation,” IEEE Trans. Antennas Propag. 57, 1122–1132 (2009). [CrossRef]
  47. A. Randazzo, G. Oliveri, A. Massa, and M. Pastorino, “Electromagnetic inversion with the multiscaling inexact-Newton method: experimental validation,” Microw. Opt. Technol. Lett. 53, 2834–2838 (2011).
  48. G. Oliveri, L. Lizzi, M. Pastorino, and A. Massa, “A nested multi-scaling inexact-Newton iterative approach for microwave imaging,” IEEE Trans. Antennas Propag. 60, 971–983 (2012). [CrossRef]
  49. G. Oliveri, A. Randazzo, M. Pastorino, and A. Massa, “Electromagnetic imaging within the contrast-source formulation by means of the multiscaling inexact Newton method,” J. Opt. Soc. Am. A 29, 945–958 (2012). [CrossRef]
  50. M. Lambert and D. Lesselier, “Binary-constrained inversion of a buried cylindrical obstacle from complete and phaseless magnetic fields,” Inverse Probl. 16, 563–576 (2000).
  51. A. Baussard, E. L. Miller, and D. Lesselier, “Adaptive multiscale reconstruction of buried objects,” Inverse Probl. 20, S1–S15 (2004). [CrossRef]
  52. D. Franceschini, A. Massa, M. Pastorino, and A. Zanetti, “Multi-resolution iterative retrieval of real inhomogeneous targets,” Inverse Probl. 21, S51–S63 (2005). [CrossRef]
  53. G. Oliveri, Y. Zhong, X. Chen, and A. Massa, “Multi-resolution subspace-based optimization for inverse scattering,” J. Opt. Soc. Am. A 28, 2057–2069 (2011). [CrossRef]
  54. S. Caorsi, M. Donelli, D. Franceschini, and A. Massa, “A new methodology based on an iterative multiscaling for microwave imaging,” IEEE Trans. Microw. Theory Technol. 51, 1162–1173 (2003). [CrossRef]
  55. D. C. Stinson, Intermediate Mathematics of Electromagnetics (Prentice-Hall, 1976).
  56. L. Landweber, “An iteration formula for Fredholm integral equations of the first kind,” Am. J. Math. 73, 615–624 (1951). [CrossRef]
  57. J. H. Richmond, “Scattering by a dielectric cylinder of arbitrary cross shape,” IEEE Trans. Antennas Propag. 13, 334–341 (1965). [CrossRef]
  58. O. M. Bucci and G. Franceschetti, “On the degrees of freedom of scattered fields,” IEEE Trans. Antennas Propag. 37, 918–926 (1989). [CrossRef]
  59. O. M. Bucci, L. Crocco, T. Isernia, and V. Pascazio, “Subsurface inverse scattering problems: quantifying qualifying and achieving the available information,” IEEE Trans. Geosci. Remote Sens. 39, 2527–2538 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited