OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1194–1199

Role of hybrid wave in electromagnetic enhancement by a metallic groove doublet

Siwen Zhang, Haitao Liu, and Xiaodong Sun  »View Author Affiliations

JOSA A, Vol. 31, Issue 6, pp. 1194-1199 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (614 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We provide an elaborate investigation on the role of a hybrid wave (HW) in electromagnetic enhancement by a groove doublet in metallic substrate. A simple HW model is built to explore the detailed effect of HW on electromagnetic enhancement. The effective range of electromagnetic enhancement is obtained within 0.1λ away from a metal surface. The excitation of HW by a single groove has a gentle growth (from 0.03 to 0.26) as the groove gets wide, which implies that the emerging field of HW launched by a single groove is quite weak for narrow ones. HW, being like an “energy porter,” takes away partial energy from the Fabry–Perot resonance, which will be further coupled into the fundamental mode in the other groove after traveling along the metal surface. Our analysis reveals a compensation of electromagnetic enhancement for wide grooves attributed to the appearance of HW. The dependence of HW and electromagnetic enhancement on the noble metal type is also discussed.

© 2014 Optical Society of America

OCIS Codes
(240.6690) Optics at surfaces : Surface waves
(260.3910) Physical optics : Metal optics
(050.6624) Diffraction and gratings : Subwavelength structures
(240.6695) Optics at surfaces : Surface-enhanced Raman scattering

ToC Category:
Optics at Surfaces

Original Manuscript: January 21, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 7, 2014
Published: May 12, 2014

Siwen Zhang, Haitao Liu, and Xiaodong Sun, "Role of hybrid wave in electromagnetic enhancement by a metallic groove doublet," J. Opt. Soc. Am. A 31, 1194-1199 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Lalanne, J. P. Hugonin, H. Liu, and B. Wang, “A microscopic view of the electromagnetic properties of sub-l metallic surfaces,” Surf. Sci. Rep. 64, 453–469 (2009). [CrossRef]
  2. P. Lalanne and J. P. Hugonin, “Interaction between optical nao-objects at metallo-dielectric interfaces,” Nature 2, 551–556 (2006).
  3. H. T. Liu and P. Lalanne, “Microscopic theory of the extraordinary optical transmission,” Nature 452, 728–731 (2008). [CrossRef]
  4. M. Kahl and E. Voges, “Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures,” Phys. Rev. B 61, 14078–14088 (2000). [CrossRef]
  5. J. L. Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Controlling strong electromagnetic fields at subwavelength scales,” Phys. Rev. Lett. 97, 036405 (2006). [CrossRef]
  6. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18, A366–A380 (2010). [CrossRef]
  7. J. Li, D. Fattal, and Z. Li, “Plasmonic optical antennas on dielectric gratings with high field enhancement for surface enhanced Raman spectroscopy,” Appl. Phys. Lett. 94, 263114 (2009). [CrossRef]
  8. M. Culha, D. Stokes, L. R. Allain, and T. Vo-Dinh, “Surface-enhanced Raman scattering substrate based on a self assembled monolayer for use in gene diagnostics,” Anal. Chem. 75, 6196–6201 (2003). [CrossRef]
  9. A. G. Brolo, E. Arctander, R. Gordon, B. Leathem, and K. L. Kavanagh, “Nanohole-enhanced Raman scattering,” Nano Lett. 4, 2015–2018 (2004). [CrossRef]
  10. P. Gadenne, X. Quelin, S. Ducourtieux, S. Gresillon, L. Aigouy, J. C. Rivoal, V. Shalaev, and A. Sarychev, “Direct observation of locally enhanced electromagnetic field,” Phys. B 279, 52–55 (2000). [CrossRef]
  11. F. J. García-Vidal and J. B. Pendry, “Collective theory for surface enhanced Raman scattering,” Phys. Rev. Lett. 77, 1163–1166 (1996). [CrossRef]
  12. H. Xu, J. Aizpirua, M. Käll, and P. Apell, “Electromagnetic contributions to single-molecule sensitivity in surface-enhanced Raman scattering,” Phys. Rev. E 62, 4318–4324 (2000). [CrossRef]
  13. S. Collin, F. Pardo, and J. L. Pelouard, “Resonant-cavity-enhanced subwavelength metal-semiconductor-metal photodetector,” Appl. Phys. Lett. 83, 1521–1523 (2003). [CrossRef]
  14. V. E. Ferry, L. A. Sweatlock, D. Pacifici, and H. A. Atwater, “Plasmonic nanostructure design for efficient light coupling into solar cells,” Nano Lett. 8, 4391–4397 (2008). [CrossRef]
  15. V. E. Ferry, M. A. Verschuuren, H. B. T. Li, E. Verhagen, R. J. Walters, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Light trapping in ultrathin plasmonic solar cells,” Opt. Express 18, A237–A245 (2010). [CrossRef]
  16. W. Bai, Q. Gan, F. Bartoli, J. Zhang, L. Cai, Y. Huang, and G. Song, “Design of plasmonic back structures for efficiency enhancement of thin-film amorphous Si solar cells,” Opt. Lett. 34, 3725–3727 (2009). [CrossRef]
  17. B. Zeng, Q. Gan, Z. H. Kafafi, and F. J. Bartoli, “Polymeric photovoltaics with various metallic plasmonic nanostructures,” J. Appl. Phys. 113, 063109 (2013). [CrossRef]
  18. C. Min, J. Li, G. Veronis, J. Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett. 96, 133302 (2010). [CrossRef]
  19. K. Liu, B. Zeng, H. Song, Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Super absorption of ultra-thin organic photovoltaic films,” Opt. Commun. 314, 48–56 (2014). [CrossRef]
  20. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Sagnes, I. Robert-Philio, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010). [CrossRef]
  21. A. Curto, G. Volpe, T. Taminiau, M. Kreuzer, R. Quidant, and N. Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329, 930–933 (2010). [CrossRef]
  22. H. T. Miyazaki and Y. Kurokawa, “How can a resonant nanogap enhance optical fields by many orders of magnitude?” IEEE J. Sel. Top. Quantum Electron. 14, 1565–1576 (2008). [CrossRef]
  23. E. Popov, N. Bonod, and S. Enoch, “Comparison of Plasmon surface waves on shallow and deep metallic 1D and 2D gratings,” Opt. Express 15, 4224–4237 (2007). [CrossRef]
  24. J. Le Perchec, P. Quémerais, A. Barbara, and T. López-Ríos, “Why metallic surfaces with grooves a few nanometers deep and wide may strongly absorb visible light,” Phys. Rev. Lett. 100, 166408 (2008). [CrossRef]
  25. F. Llopis, I. Tobías, and M. Jakas, “Light intensity enhancement inside the grooves of metallic gratings,” J. Opt. Soc. Am. B 27, 1998–2006 (2010). [CrossRef]
  26. S. Nie and S. R. Emory, “Probing single molecules and single nanoparticles by surface-enhanced Raman scattering,” Science 275, 1102–1106 (1997). [CrossRef]
  27. W. Yuan, H. P. Ho, R. K. Y. Lee, and S. Kong, “Surface-enhanced Raman scattering biosensor for DNA detection on nanoparticle island substrates,” Appl. Opt. 48, 4329–4337 (2009). [CrossRef]
  28. H. Tamaru, H. T. Miyazali, and K. Miyano, “Resonant light scattering from individual Ag nanoparticles and particle pairs,” Appl. Phys. Lett. 80, 1826–1828 (2002). [CrossRef]
  29. S. W. Zhang, H. T. Liu, and G. G. Mu, “Analysis of electromagnetic enhancement by a groove doublet in gold substrate,” Opt. Lett. 37, 4898–4900 (2012). [CrossRef]
  30. H. T. Liu and P. Lalanne, “Light scattering by metallic surfaces with subwavelength patterns,” Phys. Rev. B 82, 115418 (2010). [CrossRef]
  31. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a single nano-groove in metallic substrate,” J. Opt. Soc. Am. A 27, 1555–1560 (2010). [CrossRef]
  32. S. W. Zhang, H. T. Liu, and G. G. Mu, “Electromagnetic enhancement by a periodic array of nanogrooves in a metallic substrate,” J. Opt. Soc. Am. A 28, 879–886 (2011). [CrossRef]
  33. F. Beijnum, C. Rétif, C. Smiet, H. T. Liu, P. Lalanne, and M. Exter, “Quasi-cylindrical wave contribution in experiments on extraordinary optical transmission,” Nature 492, 411–414 (2012). [CrossRef]
  34. E. D. Palik, Handbook of Optical Constants of Solids Part II (Academic, 1985).
  35. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, 1988).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited