OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1206–1214

Fast nonparaxial scalar focal field calculations

Matthias Hillenbrand, Armin Hoffmann, Damien P. Kelly, and Stefan Sinzinger  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1206-1214 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001206


View Full Text Article

Enhanced HTML    Acrobat PDF (937 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

An efficient algorithm for calculating nonparaxial scalar field distributions in the focal region of a lens is discussed. The algorithm is based on fast Fourier transform implementations of the first Rayleigh–Sommerfeld diffraction integral and assumes that the input field at the pupil plane has a larger extent than the field in the focal region. A sampling grid is defined over a finite region in the output plane and referred to as a tile. The input field is divided into multiple separate spatial regions of the size of the output tile. Finally, the input tiles are added coherently to form a summed tile, which is propagated to the output plane. Since only a single tile is propagated, there are significant reductions of computational load and memory requirements. This method is combined either with a subpixel sampling technique or with a chirp z-transform to realize smaller sampling intervals in the output plane than in the input plane. For a given example the resulting methods enable a speedup of approximately 800× in comparison to the normal angular spectrum method, while the memory requirements are reduced by more than 99%.

© 2014 Optical Society of America

OCIS Codes
(050.1960) Diffraction and gratings : Diffraction theory
(110.2990) Imaging systems : Image formation theory
(220.2560) Optical design and fabrication : Propagating methods

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 18, 2014
Revised Manuscript: April 1, 2014
Manuscript Accepted: April 7, 2014
Published: May 12, 2014

Citation
Matthias Hillenbrand, Armin Hoffmann, Damien P. Kelly, and Stefan Sinzinger, "Fast nonparaxial scalar focal field calculations," J. Opt. Soc. Am. A 31, 1206-1214 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1206


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Wilson and C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy, 2nd ed. (Academic, 1985).
  2. T. R. Corle and G. S. Kino, Confocal Scanning Optical Microscopy and Related Imaging Systems (Academic, 1996).
  3. J. J. Braat, S. van Haver, A. J. Janssen, and P. Dirksen, “Assessment of optical systems by means of point-spread functions,” Prog. Opt. 51, 349–468 (2008). [CrossRef]
  4. T. Kreis, Handbook of Holographic Interferometry: Optical and Digital Methods (Wiley-VCH, 2005).
  5. U. Schnars and W. Jueptner, Digital Holography: Digital Hologram Recording, Numerical Reconstruction, and Related Techniques (Springer, 2005).
  6. J. J. Stamnes, Waves in Focal Regions: Propagation, Diffraction and Focusing of Light, Sound and Water Waves, The Adam Hilger Series on Optics and Optoelectronics (Hilger, 1986).
  7. S. van Haver and A. J. E. M. Janssen, “Advanced analytic treatment and efficient computation of the diffraction integrals in the extended Nijboer-Zernike theory,” J. Eur. Opt. Soc. Rapid Pub. 8, 13044 (2013). [CrossRef]
  8. T. M. Kreis, M. Adams, and W. P. O. Jüptner, “Methods of digital holography: a comparison,” Proc. SPIE 3098, 224–233 (1997). [CrossRef]
  9. N. Delen and B. Hooker, “Free-space beam propagation between arbitrarily oriented planes based on full diffraction theory: a fast Fourier transform approach,” J. Opt. Soc. Am. A 15, 857–867 (1998). [CrossRef]
  10. F. B. Shen and A. B. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45, 1102–1110 (2006). [CrossRef]
  11. J. W. Goodman, Introduction to Fourier Optics, 3rd ed. (Roberts, 2005).
  12. D. P. Kelly, N. Sabitov, T. Meinecke, and S. Sinzinger, “Some considerations when numerically calculating diffraction patterns,” in Digital Holography and Three-Dimensional Imaging (Optical Society of America, 2011), paper DTuC5.
  13. T. Kozacki, “Numerical errors of diffraction computing using plane wave spectrum decomposition,” Opt. Commun. 281, 4219–4223 (2008). [CrossRef]
  14. P. Lobaz, “Reference calculation of light propagation between parallel planes of different sizes and sampling rates,” Opt. Express 19, 32–39 (2011). [CrossRef]
  15. D. Asoubar, Z. Site, F. Wyrowski, and M. Kuhn, “Parabasal field decomposition and its application to non-paraxial propagation,” Opt. Express 20, 23502–23517 (2012). [CrossRef]
  16. M. Kanka, R. Riesenberg, and H. J. Kreuzer, “Reconstruction of high-resolution holographic microscopic images,” Opt. Lett. 34, 1162–1164 (2009). [CrossRef]
  17. M. Kanka, A. Wuttig, C. Graulig, and R. Riesenberg, “Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit,” Opt. Lett. 35, 217–219 (2010). [CrossRef]
  18. M. Kanka, “Bildrekonstruktion in der digitalen inline-holographischen Mikrsokopie,” Ph.D. thesis (Technische Universität Ilmenau, 2011).
  19. P. Lobaz, “Memory-efficient reference calculation of light propagation using the convolution method,” Opt. Express 21, 2795–2806 (2013). [CrossRef]
  20. A. Wuttig, M. Kanka, H. J. Kreuzer, and R. Riesenberg, “Packed domain Rayleigh-Sommerfeld wavefield propagation for large targets,” Opt. Express 18, 27036–27047 (2010). [CrossRef]
  21. F. Gori, “Fresnel transform and sampling theorem,” Opt. Commun. 39, 293–297 (1981). [CrossRef]
  22. D. P. Kelly, “Numerical calculation of the Fresnel transform,” J. Opt. Soc. Am. A 31, 755–764 (2014). [CrossRef]
  23. F. Zhang, G. Pedrini, and W. Osten, “Reconstruction algorithm for high-numerical-aperture holograms with diffraction-limited resolution,” Opt. Lett. 31, 1633–1635 (2006). [CrossRef]
  24. L. Bluestein, “A linear filtering approach to the computation of discrete Fourier transform,” IEEE Trans. Audio Electroacoust. 18, 451–455 (1970). [CrossRef]
  25. L. R. Rabiner, R. W. Schafer, and C. M. Rader, “The chirp z-transform algorithm and its application,” Bell Syst. Tech. J. 48, 1249–1292 (1969). [CrossRef]
  26. V. Nascov and P. C. Logofatu, “Fast computation algorithm for the Rayleigh-Sommerfeld diffraction formula using a type of scaled convolution,” Appl. Opt. 48, 4310–4319 (2009). [CrossRef]
  27. S. Odate, C. Koike, H. Toba, T. Koike, A. Sugaya, K. Sugisaki, K. Otaki, and K. Uchikawa, “Angular spectrum calculations for arbitrary focal length with a scaled convolution,” Opt. Express 19, 14268–14276 (2011). [CrossRef]
  28. X. Yu, T. Xiahui, Q. Yingxiong, P. Hao, and W. Wei, “Band-limited angular spectrum numerical propagation method with selective scaling of observation window size and sample number,” J. Opt. Soc. Am. A 29, 2415–2420 (2012). [CrossRef]
  29. T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128–4130 (2012). [CrossRef]
  30. J. Lin, X. C. Yuan, S. S. Kou, C. J. R. Sheppard, O. G. Rodríguez-Herrera, and J. C. Dainty, “Direct calculation of a three-dimensional diffracted field,” Opt. Lett. 36, 1341–1343 (2011). [CrossRef]
  31. B. M. Hennelly, D. P. Kelly, D. S. Monaghan, and N. Pandey, “Zoom algorithms for digital holography,” in Information Optics and Photonics, B. Javidi and T. Fournel, eds. (Springer, 2010), pp. 187–204.
  32. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453–18463 (2010). [CrossRef]
  33. H. Osterberg and L. W. Smith, “Closed solutions of Rayleigh’s diffraction integral for axial points,” J. Opt. Soc. Am. 51, 1050–1054 (1961). [CrossRef]
  34. J. C. Heurtley, “Scalar Rayleigh-Sommerfeld and Kirchhoff diffraction integrals: a comparison of exact evaluations for axial points,” J. Opt. Soc. Am. 63, 1003–1008 (1973). [CrossRef]
  35. H. H. Hopkins and M. J. Yzuel, “The computation of diffraction patterns in the presence of aberrations,” Opt. Acta 17, 157–182 (1970). [CrossRef]
  36. J. J. Stamnes and H. A. Eide, “Exact and approximate solutions for focusing of two-dimensional waves. I. Theory,” J. Opt. Soc. Am. A 15, 1285–1291 (1998). [CrossRef]
  37. L. F. Shampine, “Matlab program for quadrature in 2D,” Appl. Math. Comput. 202, 266–274 (2008).
  38. G. C. Sherman, “Application of the convolution theorem to Rayleigh’s integral formulas,” J. Opt. Soc. Am. 57, 546–547 (1967). [CrossRef]
  39. D. G. Voelz and M. C. Roggemann, “Digital simulation of scalar optical diffraction: revisiting chirp function sampling criteria and consequences,” Appl. Opt. 48, 6132–6142 (2009). [CrossRef]
  40. E. O. Brigham, The Fast Fourier Transform and Its Applications, Prentice-Hall Signal Processing Series (Prentice-Hall, 1988).
  41. O. K. Ersoy, Diffraction, Fourier Optics and Imaging, Vol. 30 of Wiley Series in Pure and Applied Optics (Wiley-Interscience, 2007).
  42. D. P. Kelly, W. T. Rhodes, J. T. Sheridan, and B. M. Hennelly, “Analytical and numerical analysis of linear optical systems,” Opt. Eng. 45, 088201 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited