OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1215–1225

Quantitative confocal spiral phase contrast

Marc Guillon and Marcel A. Lauterbach  »View Author Affiliations

JOSA A, Vol. 31, Issue 6, pp. 1215-1225 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate quantitative phase delay measurements with a spiral phase contrast microscope working in confocal mode. Such a confocal configuration is sensitive to weak phase objects due to background rejection but does not give direct access to the phase delay introduced by the sample. We develop a theory showing that shifting the illumination spot relative to the detector gives access to the local phase gradient in the first-order approximation. Subsequently, we present an iterative integration algorithm for phase delay measurements. This approach is validated on simulated and calibrated experimental images. Finally, the algorithm is applied to measure the phase profile of a cell, in which phase delays of 10 mrad are observed.

© 2014 Optical Society of America

OCIS Codes
(070.6110) Fourier optics and signal processing : Spatial filtering
(180.1790) Microscopy : Confocal microscopy
(180.3170) Microscopy : Interference microscopy

ToC Category:

Original Manuscript: February 25, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 8, 2014
Published: May 12, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Marc Guillon and Marcel A. Lauterbach, "Quantitative confocal spiral phase contrast," J. Opt. Soc. Am. A 31, 1215-1225 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Barer, “Interference microscopy and mass determination,” Nature 169, 366–367 (1952). [CrossRef]
  2. P. Jourdain, N. Pavillon, C. Moratal, D. Boss, B. Rappaz, C. Depeursinge, P. Marquet, and P. J. Magistretti, “Determination of transmembrane water fluxes in neurons elicited by glutamate ionotropic receptors and by the cotransporters KCC2 and NKCC1: a digital holographic microscopy study,” J. Neurosci. 31, 11846–11854 (2011). [CrossRef]
  3. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Spiral interferogram analysis,” J. Opt. Soc. Am. A 23, 1400–1409 (2006). [CrossRef]
  4. G. Situ, M. Warber, G. Pedrini, and W. Osten, “Phase contrast enhancement in microscopy using spiral phase filtering,” Opt. Commun. 283, 1273–1277 (2010). [CrossRef]
  5. M. A. Lauterbach, M. Guillon, A. Soltani, and V. Emiliani, “STED microscope with spiral phase contrast,” Sci. Rep. 3, 2050 (2013). [CrossRef]
  6. C. Maurer, S. Bernet, and M. Ritsch-Marte, “Refining common path interferometry with a spiral phase Fourier filter,” J. Opt. A 11, 094023 (2009). [CrossRef]
  7. A. Jesacher, S. Fürhapter, S. Bernet, and M. Ritsch-Marte, “Shadow effects in spiral phase contrast microscopy,” Phys. Rev. Lett. 94, 233902 (2005). [CrossRef]
  8. S. Bernet, A. Jesacher, S. Fürhapter, C. Maurer, and M. Ritsch-Marte, “Quantitative imaging of complex samples by spiral phase contrast microscopy,” Opt. Express 14, 3792–3805 (2006). [CrossRef]
  9. D. K. Hamilton and T. Wilson, “Two-dimensional phase imaging in the scanning optical microscope,” Appl. Opt. 23, 348–352 (1984). [CrossRef]
  10. M. R. Atkinson and A. E. Dixon, “Single-pinhole confocal differential phase contrast microscopy,” Appl. Opt. 33, 641–653 (1994). [CrossRef]
  11. W. B. Amos, S. Reichelt, D. M. Cattermole, and J. Laufer, “Re-evaluation of differential phase contrast (DPC) in a scanning laser microscope using a split detector as an alternative to differential interference contrast (DIC) optics,” J. Microsc. 210, 166–175 (2003). [CrossRef]
  12. G. Brakenhoff, “Imaging modes in confocal scanning light-microscopy (CSLM),” J. Microsc. 117, 233–242 (1979). [CrossRef]
  13. C. Cogswell and C. Sheppard, “Confocal differential interference contrast (DIC) microscopy—including a theoretical-analysis of conventional and confocal DIC imaging,” J. Microsc. 165, 81–101 (1992). [CrossRef]
  14. N. Lue, W. Choi, G. Popescu, K. Badizadegan, R. R. Dasari, and M. S. Feld, “Synthetic aperture tomographic phase microscopy for 3D imaging of live cells in translational motion,” Opt. Express 16, 16240 (2008). [CrossRef]
  15. N. Lue, W. Choi, K. Badizadegan, R. R. Dasari, M. S. Feld, and G. Popescu, “Confocal diffraction phase microscopy of live cells,” Opt. Lett. 33, 2074–2076 (2008). [CrossRef]
  16. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  17. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999). [CrossRef]
  18. C. Maurer, A. Jesacher, S. Bernet, and M. Ritsch-Marte, “What spatial light modulators can do for optical microscopy,” Laser Photon. Rev. 5, 81–101 (2011). [CrossRef]
  19. R. Gase, “Representation of Laguerre–Gaussian modes by the Wigner distribution function,” IEEE J. Quantum Electron. 31, 1811–1818 (1995). [CrossRef]
  20. I. Kimel and L. Elias, “Relations between Hermite and Laguerre Gaussian modes,” IEEE J. Quantum Electron. 29, 2562–2567 (1993). [CrossRef]
  21. S.-C. Pei and C.-L. Liu, “A general form of 2D Fourier transform eigenfunctions,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, 2012), pp. 3701–3704.
  22. P. Török and P. R. T. Munro, “The use of Gauss–Laguerre vector beams in STED microscopy,” Opt. Express 12, 3605–3617 (2004). [CrossRef]
  23. E. Wolf, “Three-dimensional structure determination of semitransparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969). [CrossRef]
  24. A. Devaney, “Inverse-scattering theory within the Rytov approximation,” Opt. Lett. 6, 374–376 (1981). [CrossRef]
  25. J. Pawley, ed., Confocal Microscopy with Transmitted Light (Plenum, 1995).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited