OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1233–1238

An optical encryption and authentication scheme using asymmetric keys

Sudheesh K. Rajput and Naveen K. Nishchal  »View Author Affiliations

JOSA A, Vol. 31, Issue 6, pp. 1233-1238 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (880 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We propose a novel optical information encryption and authentication scheme that uses asymmetric keys generated by the phase-truncation approach and the phase-retrieval algorithm. Multiple images bonded with random phase masks are Fourier transformed, and obtained spectra are amplitude- and phase-truncated. The phase-truncated spectra are encoded into a single random intensity image using the phase-retrieval algorithm. Unlike most of the authentication schemes, in this study, only one encrypted reference image is required for verification of multiple secured images. The conventional double random phase encoding and correlation techniques are employed for authentication verification. Computer simulation results and theoretical explanation prove the effectiveness of the proposed scheme.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(070.4550) Fourier optics and signal processing : Correlators
(100.0100) Image processing : Image processing
(100.4998) Image processing : Pattern recognition, optical security and encryption

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: March 17, 2014
Revised Manuscript: April 15, 2014
Manuscript Accepted: April 15, 2014
Published: May 14, 2014

Sudheesh K. Rajput and Naveen K. Nishchal, "An optical encryption and authentication scheme using asymmetric keys," J. Opt. Soc. Am. A 31, 1233-1238 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane encoding and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995). [CrossRef]
  2. N. K. Nishchal and T. J. Naughton, “Flexible optical encryption with multiple users and multiple security levels,” Opt. Commun. 284, 735–739 (2011). [CrossRef]
  3. L. Chen and D. Zhao, “Optical image encryption based on fractional wavelet transform,” Opt. Commun. 254, 361–367 (2005). [CrossRef]
  4. J. A. Rodrigo, T. Alieva, and M. L. Calvo, “Applications of gyrator transform for image processing,” Opt. Commun. 278, 279–284 (2007). [CrossRef]
  5. A. Alfalou and C. Brosseau, “Exploiting root-mean-square time-frequency structure for multiple-image optical compression and encryption,” Opt. Lett. 35, 1914–1916 (2010). [CrossRef]
  6. J. F. Barrera, A. Mira, and R. Torroba, “Optical encryption and QR codes: secure and noise-free information retrieval,” Opt. Express 21, 5373–5378 (2013). [CrossRef]
  7. W. Chen, X. Chen, A. Anand, and B. Javidi, “Optical encryption using multiple intensity samplings in the axial domain,” J. Opt. Soc. Am. A 30, 806–812 (2013). [CrossRef]
  8. A. Alfalou and C. Brosseau, “Optical image compression and encryption methods,” Opt. Photon. 1, 589–636 (2009). [CrossRef]
  9. A. Alfalou and C. Brosseau, “Dual encryption scheme of images using polarized light,” Opt. Lett. 35, 2185–2187 (2010). [CrossRef]
  10. A. Alfalou and C. Brosseau, “Implementing compression and encryption of phase-shifting digital holograms for three-dimensional object reconstruction,” Opt. Commun. 307, 67–72 (2013). [CrossRef]
  11. A. Carnicer, M. M. Usategui, S. Arcos, and I. Juvells, “Vulnerability to chosen-cyphertext attacks of the optical encryption schemes based on double random phase keys,” Opt. Lett. 30, 1644–1646 (2005). [CrossRef]
  12. Y. Frauel, A. Castro, T. Naughton, and B. Javidi, “Resistance of the double random phase encryption against various attacks,” Opt. Express 15, 10253–10265 (2007). [CrossRef]
  13. W. Qin and X. Peng, “Asymmetric cryptosystem based on phase-truncated Fourier transforms,” Opt. Lett. 35, 118–120 (2010). [CrossRef]
  14. S. K. Rajput and N. K. Nishchal, “Image encryption based on interference that uses fractional Fourier domains asymmetric keys,” Appl. Opt. 51, 1446–1452 (2012). [CrossRef]
  15. X. Wang and D. Zhao, “A special attack on the asymmetric cryptosystem based on phase-truncated fractional Fourier transforms,” Opt. Commun. 285, 1078–1081 (2012). [CrossRef]
  16. S. K. Rajput and N. K. Nishchal, “Asymmetric color cryptosystem using polarization selective diffractive optical element and structured phase mask,” Appl. Opt. 51, 5377–5386 (2012). [CrossRef]
  17. S. K. Rajput and N. K. Nishchal, “Known-plaintext attack-based optical cryptosystem using phase-truncated Fresnel transform,” Appl. Opt. 52, 871–878 (2013). [CrossRef]
  18. S. K. Rajput and N. K. Nishchal, “Image encryption using polarized light encoding and amplitude- and phase-truncated Fresnel transform,” Appl. Opt. 52, 4343–4352 (2013). [CrossRef]
  19. S. K. Rajput and N. K. Nishchal, “Known-plaintext attack on encryption domain independent optical asymmetric cryptosystem,” Opt. Commun. 309, 231–235 (2013). [CrossRef]
  20. X. Wang and D. Zhao, “Amplitude-phase retrieval attack free cryptosystem based on direct attack to phase-truncated Fourier transform-based encryption using a random amplitude mask,” Opt. Lett. 38, 3684–3686 (2013). [CrossRef]
  21. X. Wan, Y. Chen, C. Dai, and D. Zhao, “Discussion and a new attack of the optical asymmetric cryptosystem based on phase-truncated Fourier transform,” Appl. Opt. 53, 208–213 (2014). [CrossRef]
  22. S. K. Rajput and N. K. Nishchal, “Fresnel domain nonlinear image encryption scheme based on Gerchberg-Saxton phase-retrieval algorithm,” Appl. Opt. 53, 418–425 (2014). [CrossRef]
  23. S. Kishk and B. Javidi, “Watermarking of three-dimensional objects by digital holography,” Opt. Lett. 28, 167–169 (2003). [CrossRef]
  24. N. K. Nishchal, “Hierarchical encrypted image watermarking using fractional Fourier domain random phase encoding,” Opt. Eng. 50, 097003 (2011). [CrossRef]
  25. Y.-Y. Chen, J.-H. Wang, C.-C. Lin, and H.-E. Hwang, “Lensless optical data hiding system based on phase encoding algorithm in the Fresnel domain,” Appl. Opt. 52, 5247–5257 (2013). [CrossRef]
  26. B. Javidi and J. L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994). [CrossRef]
  27. D. Abookasis, O. Arazi, J. Rosen, and B. Javidi, “Security optical systems based on joint transform correlator with significant output images,” Opt. Eng. 40, 1584–1589 (2001). [CrossRef]
  28. S. K. Rajput and N. K. Nishchal, “Image encryption and authentication verification based on nonconventional fractional joint transform correlator,” Opt. Lasers Eng. 50, 1474–1483 (2012). [CrossRef]
  29. E. Perez-Cabre, M. Cho, and B. Javidi, “Information authentication using photon-counting double-random-phase encrypted images,” Opt. Lett. 36, 22–24 (2011). [CrossRef]
  30. M. Cho, A. Mahalanobis, and B. Javidi, “3D passive photon counting automatic target recognition using advanced correlation filters,” Opt. Lett. 36, 861–863 (2011). [CrossRef]
  31. E. Perez-Cabre, H. C. Abril, M. S. Millan, and B. Javidi, “Photon-counting double-random-phase encoding for secure image verification and retrieval,” J. Opt. 14, 094001 (2012). [CrossRef]
  32. M. Cho and B. Javidi, “Three-dimensional photon counting double-random-phase encryption,” Opt. Lett. 38, 3198–3201 (2013). [CrossRef]
  33. A. Markman and B. Javidi, “Full phase photon counting double-random-phase encryption,” J. Opt. Soc. Am. A 31, 394–403 (2014). [CrossRef]
  34. R. W. Gerchberg and W. O. Saxton, “A practical algorithm for the determination of phase from image and diffraction plane,” Optik 35, 237–246 (1972).
  35. Z. Zalevsky, D. Mendlovic, and R. G. Dorsch, “Gerchberg-Saxton algorithm applied in the fractional Fourier or the Fresnel domain,” Opt. Lett. 21, 842–844 (1996). [CrossRef]
  36. B. Javidi, “Nonlinear joint power spectrum based optical correlation,” Appl. Opt. 28, 2358–2367 (1989). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited