OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1239–1246

Beam propagation factors and kurtosis parameters of a Lorentz–Gauss vortex beam

Guoquan Zhou  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1239-1246 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001239


View Full Text Article

Enhanced HTML    Acrobat PDF (1264 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Based on the second-order and the higher-order moments, analytical expressions for the beam propagation factors of a Lorentz–Gauss vortex beam with l=1 have been derived, and analytical propagation expressions for the kurtosis parameters of a Lorentz–Gauss vortex beam with l=1 through a paraxial and real ABCD optical system have also been presented. The M2 factor is determined by the parameters a and b and decreases with increasing the parameter a or b. The M2 factor is validated to be larger than 2. The kurtosis parameters depend on the diffraction-free ranges of the Lorentz part, the parameters a and b, and the ratio A/B. The kurtosis parameters of a Lorentz–Gauss vortex beam propagating in free space are demonstrated in different reference planes. In the far field, the kurtosis parameter K decreases with increasing one of the parameters a and b. Upon propagation, the kurtosis parameter K first decreases, then increases, and finally tends to a saturated value. In any case, the kurtosis parameter K is larger than 2. This research is beneficial to optical trapping, guiding, and manipulation of microscopic particles and atoms using Lorentz–Gauss vortex beams.

© 2014 Optical Society of America

OCIS Codes
(350.5500) Other areas of optics : Propagation
(140.3295) Lasers and laser optics : Laser beam characterization
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: March 24, 2014
Manuscript Accepted: April 14, 2014
Published: May 14, 2014

Citation
Guoquan Zhou, "Beam propagation factors and kurtosis parameters of a Lorentz–Gauss vortex beam," J. Opt. Soc. Am. A 31, 1239-1246 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1239


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Naqwi and F. Durst, “Focus of diode laser beams: a simple mathematical model,” Appl. Opt. 29, 1780–1785 (1990). [CrossRef]
  2. J. Yang, T. Chen, G. Ding, and X. Yuan, “Focusing of diode laser beams: a partially coherent Lorentz model,” Proc. SPIE 6824, 68240A (2008). [CrossRef]
  3. O. E. Gawhary and S. Severini, “Lorentz beams and symmetry properties in paraxial optics,” J. Opt. A 8, 409–414 (2006). [CrossRef]
  4. G. Zhou, “Focal shift of focused truncated Lorentz–Gauss beam,” J. Opt. Soc. Am. A 25, 2594–2599 (2008). [CrossRef]
  5. G. Zhou, “Beam propagation factors of a Lorentz–Gauss beam,” Appl. Phys. B 96, 149–153 (2009). [CrossRef]
  6. A. Torre, “Wigner distribution function of Lorentz–Gauss beams: a note,” Appl. Phys. B 109, 671–681 (2012). [CrossRef]
  7. C. Zhao and Y. Cai, “Paraxial propagation of Lorentz and Lorentz–Gauss beams in uniaxial crystals orthogonal to the optical axis,” J. Mod. Opt. 57, 375–384 (2010). [CrossRef]
  8. G. Zhou, “Fractional Fourier transform of Lorentz–Gauss beams,” J. Opt. Soc. Am. A 26, 350–355 (2009). [CrossRef]
  9. W. Du, C. Zhao, and Y. Cai, “Propagation of Lorentz and Lorentz–Gauss beams through an apertured fractional Fourier transform optical system,” Opt. Lasers Eng. 49, 25–31 (2011). [CrossRef]
  10. G. Zhou and X. Chu, “Average intensity and spreading of a Lorentz–Gauss beam in turbulent atmosphere,” Opt. Express 18, 726–731 (2010). [CrossRef]
  11. H. P. Zheng, R. Chen, and C. H. R. Ooi, “Self-focusing dynamics of Lorentz–Gaussian beams in Kerr media,” Lasers Eng. 24, 345–354 (2013).
  12. A. Keshavarz and G. Honarasa, “Propagation of Lorentz–Gaussian beams in strongly nonlocal nonlinear media,” Commun. Theor. Phys. 61, 241–245 (2014). [CrossRef]
  13. Q. Sun, A. Li, K. Zhou, Z. Liu, G. Fang, and S. Liu, “Virtual source for rotational symmetric Lorentz–Gaussian beam,” Chin. Opt. Lett. 10, 062601 (2012). [CrossRef]
  14. Y. Jiang, K. Huang, and X. Lu, “Radiation force of highly focused Lorentz–Gauss beams on a Rayleigh particle,” Opt. Express 19, 9708–9713 (2011). [CrossRef]
  15. G. Zhou, “Propagation of a partially coherent Lorentz–Gauss beam through a paraxial ABCD optical system,” Opt. Express 18, 4637–4643 (2010). [CrossRef]
  16. H. T. Eyyuboğlu, “Partially coherent Lorentz–Gaussian beam and its scintillations,” Appl. Phys. B 103, 755–762 (2011). [CrossRef]
  17. C. Zhao and Y. Cai, “Propagation of partially coherent Lorentz and Lorentz–Gauss beams through a paraxial ABCD optical system in a turbulent atmosphere,” J. Mod. Opt. 58, 810–818 (2011). [CrossRef]
  18. Y. Ni and G. Zhou, “Propagation of a Lorentz–Gauss vortex beam through a paraxial ABCD optical system,” Opt. Commun. 291, 19–25 (2013). [CrossRef]
  19. G. Zhou, X. Wang, and X. Chu, “Fractional Fourier transform of Lorentz–Gauss vortex beams,” Sci. China-Phys. Mech. Astron. 56, 1487–1494 (2013). [CrossRef]
  20. F. Rui, D. Zhang, M. Ting, X. Gao, and S. Zhuang, “Focusing of linearly polarized Loretnz–Gauss beam with one optical vortex,” Optik 124, 2969–2973 (2013). [CrossRef]
  21. Y. Ni and G. Zhou, “Nonparaxial propagation of Lorentz–Gauss vortex beams in uniaxial crystals orthogonal to the optical axis,” Appl. Phys. B 108, 883–890 (2012). [CrossRef]
  22. G. Zhou and G. Ru, “Propagation of a Lorentz–Gauss vortex beam in a turbulent atmosphere,” PIER 143, 143–163 (2013). [CrossRef]
  23. G. Zhou and G. Ru, “Angular momentum density of a linearly polarized Lorentz–Gauss vortex beam,” Opt. Commun. 313, 157–169 (2014). [CrossRef]
  24. R. Martínez-Herrero and P. M. Mejías, “Second-order spatial characterization of hard-edge diffracted beams,” Opt. Lett. 18, 1669–1671 (1993). [CrossRef]
  25. R. Martínez-Herrero, P. M. Mejías, and M. Arias, “Parametric characterization of coherent, lowest-order Gaussian beams propagating through hard-edged apertures,” Opt. Lett. 20, 124–126 (1995). [CrossRef]
  26. Z. Mei and D. Zhao, “Approximate method for the generalized M2 factor of rotationally symmetric hard-edged diffracted flattened Gaussian beams,” Appl. Opt. 44, 1381–1386 (2005). [CrossRef]
  27. D. Deng, “Generalized M2-factor of hollow Gaussian beams through a hard-edge circular aperture,” Phys. Lett. A 341, 352–356 (2005). [CrossRef]
  28. G. Nemes and J. Serna, “Laser beam characterization with use of second order moments: an overview,” OSA TOPS 17, 200–207 (1998).
  29. B. Lü and H. Ma, “Beam propagation factor of decentred Gaussian and cosine-Gaussian beams,” J. Mod. Opt. 47, 719–723 (2000).
  30. B. D. Bock, Multivariate Statistical Method in Behavioral Research (McGraw-Hill, 1975).
  31. H. Weber, “Propagation of higher-order intensity moments in quadratic-index media,” Opt. Quantum Electron. 24, S1027–S1049 (1992). [CrossRef]
  32. G. Zhou and X. Chu, “M2-factor of a partially coherent Lorentz–Gauss beam in a turbulent atmosphere,” Appl. Phys. B 100, 909–915 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited