OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1251–1258

Reflective properties of randomly rough surfaces under large incidence angles

J. Qiu, W. J. Zhang, L. H. Liu, P.-f. Hsu, and L. J. Liu  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1251-1258 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001251


View Full Text Article

Enhanced HTML    Acrobat PDF (1518 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The reflective properties of randomly rough surfaces at large incidence angles have been reported due to their potential applications in some of the radiative heat transfer research areas. The main purpose of this work is to investigate the formation mechanism of the specular reflection peak of rough surfaces at large incidence angles. The bidirectional reflectance distribution function (BRDF) of rough aluminum surfaces with different roughnesses at different incident angles is measured by a three-axis automated scatterometer. This study used a validated and accurate computational model, the rigorous coupled-wave analysis (RCWA) method, to compare and analyze the measurement BRDF results. It is found that the RCWA results show the same trend of specular peak as the measurement. This paper mainly focuses on the relative roughness at the range of 0.16<σ/λ<5.35. As the relative roughness decreases, the specular peak enhancement dramatically increases and the scattering region significantly reduces, especially under large incidence angles. The RCWA and the Rayleigh criterion results have been compared, showing that the relative error of the total integrated scatter increases as the roughness of the surface increases at large incidence angles. In addition, the zero-order diffractive power calculated by RCWA and the reflectance calculated by Fresnel equations are compared. The comparison shows that the relative error declines sharply when the incident angle is large and the roughness is small.

© 2014 Optical Society of America

OCIS Codes
(260.0260) Physical optics : Physical optics
(260.2110) Physical optics : Electromagnetic optics
(290.5880) Scattering : Scattering, rough surfaces
(290.1483) Scattering : BSDF, BRDF, and BTDF

ToC Category:
Scattering

History
Original Manuscript: December 9, 2013
Revised Manuscript: March 31, 2014
Manuscript Accepted: April 16, 2014
Published: May 15, 2014

Citation
J. Qiu, W. J. Zhang, L. H. Liu, P.-f. Hsu, and L. J. Liu, "Reflective properties of randomly rough surfaces under large incidence angles," J. Opt. Soc. Am. A 31, 1251-1258 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1251

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited