OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1295–1302

Propagation of an arbitrary vortex pair through an astigmatic optical system and determination of its topological charge

Salla Gangi Reddy, Shashi Prabhakar, A. Aadhi, J. Banerji, and R. P. Singh  »View Author Affiliations


JOSA A, Vol. 31, Issue 6, pp. 1295-1302 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001295


View Full Text Article

Enhanced HTML    Acrobat PDF (951 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We embed a pair of vortices with different topological charges in a Gaussian beam and study its evolution through an astigmatic optical system, a tilted lens. The propagation dynamics are explained by a closed-form analytical expression. Furthermore, we show that a careful examination of the intensity distribution at a predicted position past the lens can determine the charge present in the beam. To the best of our knowledge, our method is the first noninterferometric technique to measure the charge of an arbitrary vortex pair. Our theoretical results are well supported by experimental observations.

© 2014 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(050.4865) Diffraction and gratings : Optical vortices

ToC Category:
Diffraction and Gratings

History
Original Manuscript: February 6, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 22, 2014
Published: May 22, 2014

Citation
Salla Gangi Reddy, Shashi Prabhakar, A. Aadhi, J. Banerji, and R. P. Singh, "Propagation of an arbitrary vortex pair through an astigmatic optical system and determination of its topological charge," J. Opt. Soc. Am. A 31, 1295-1302 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-6-1295


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Allen, M. W. Beijersbergen, R. J. C. Spreeuw, and J. P. Woerdman, “Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes,” Phys. Rev. A 45, 8185–8189 (1992). [CrossRef]
  2. K. T. Gahagan and G. A. Swartzlander, “Optical vortex trapping of particles,” Opt. Lett. 21, 827–829 (1996). [CrossRef]
  3. H. He, M. E. J. Friese, N. R. Heckenberg, and H. R. Dunlop, “Direct observation of transfer of angular momentum to absorptive particles from a laser beam with a phase singularity,” Phys. Rev. Lett. 75, 826–829 (1995). [CrossRef]
  4. D. G. Grier, “A revolution in optical manipulation,” Nature 424, 810–816 (2003). [CrossRef]
  5. N. Bozinovic, Y. Yue, Y. Ren, M. Tur, P. Kristensen, H. Huang, A. E. Willner, and S. Ramachandran, “Terabit-scale orbital angular momentum mode division multiplexing in fibers,” Science 340, 1545–1548 (2013). [CrossRef]
  6. L. Allen, S. M. Barnett, and M. J. Padgett, Optical Angular Momentum (IOP, 2003).
  7. G. M. Terriza, J. P. Torres, and L. Torner, “Twisted photons,” Nat. Phys. 3, 305–310 (2007). [CrossRef]
  8. L. Allen, M. J. Padgett, and M. Babiker, “The orbital angular momentum of light,” Prog. Opt. 39, 291–372 (1999). [CrossRef]
  9. S. N. Khonina, V. V. Kotlyar, R. V. Skidanov, V. A. Soifer, P. Laakkonen, and J. Turunen, “Gauss–Laguerre modes with different indices in prescribed diffraction orders of a diffractive phase element,” Opt. Commun. 175, 301–308 (2000). [CrossRef]
  10. A. V. Carpentier, H. Michinel, J. R. Salgueiro, and D. Olivieri, “Making optical vortices with computer-generated holograms,” Am. J. Phys. 76, 916–921 (2008). [CrossRef]
  11. J. Scheuer and M. Orenstein, “Optical vortices crystals: spontaneous generation in nonlinear semiconductor microcavities,” Science 285, 230–233 (1999). [CrossRef]
  12. R. M. Jenkins, J. Banerji, and A. R. Davies, “The generation of optical vortices and shape preserving vortex arrays in hollow multimode waveguides,” J. Opt. A 3, 527–532 (2001). [CrossRef]
  13. V. Yu. Bazhenov, M. S. Soskin, and M. V. Vasnetsov, “Screw dislocations in light wavefronts,” J. Mod. Opt. 39, 985–990 (1992). [CrossRef]
  14. G. Indebetouw, “Optical vortices and their propagation,” J. Mod. Opt. 40, 73–87 (1993). [CrossRef]
  15. F. S. Roux, “Spatial evolution of the morphology of an optical vortex dipole,” Opt. Commun. 236, 433–440 (2004). [CrossRef]
  16. F. S. Roux, “Canonical vortex dipole dynamics,” J. Opt. Soc. Am. B 21, 655–663 (2004). [CrossRef]
  17. M. Chen and F. S. Roux, “Accelerating the annihilation of an optical vortex dipole in a Gaussian beam,” J. Opt. Soc. Am. A 25, 1279–1286 (2008). [CrossRef]
  18. Z. Chen, J. Pu, and D. Zhao, “Tight focusing properties of linearly polarized Gaussian beam with a pair of vortices,” Phys. Lett. A 375, 2958–2963 (2011). [CrossRef]
  19. H. Chen, Z. Gao, H. Yang, F. Wang, and X. Huang, “Propagation of a pair of vortices through a tilted lens,” Optik 124, 4201–4205 (2013). [CrossRef]
  20. D. P. Ghai, S. Vyas, P. Senthilkumaran, and R. S. Sirohi, “Detection of phase singularity using a lateral shear interferometer,” Opt. Lasers Eng. 46, 419–423 (2008). [CrossRef]
  21. J. Arlt, K. Dholakia, L. Allen, and M. J. Padgett, “The production of multiringed Laguerre-Gaussian modes by computer-generated holograms,” J. Mod. Opt. 45, 1231–1237 (1998). [CrossRef]
  22. A. Kumar, S. Prabhakar, P. Vaity, and R. P. Singh, “Information content of optical vortex fields,” Opt. Lett. 36, 1161–1163 (2011). [CrossRef]
  23. P. Vaity and R. P. Singh, “Topological charge dependent propagation of optical vortices under quadratic phase transformation,” Opt. Lett. 37, 1301–1303 (2012). [CrossRef]
  24. S. Prabhakar, A. Kumar, J. Banerji, and R. P. Singh, “Revealing the order of a vortex through its intensity record,” Opt. Lett. 36, 4398–4400 (2011). [CrossRef]
  25. J. Hickmann, E. Fonseca, W. Soares, and S. Chvez-Cerda, “Unveiling a truncated optical lattice associated with a triangular aperture using lights orbital angular momentum,” Phys. Rev. Lett. 105, 053904 (2010). [CrossRef]
  26. A. Mourka, J. Baumgartl, C. Shanor, K. Dholakia, and E. M. Wright, “Visualization of the birth of an optical vortex using diffraction from a triangular aperture,” Opt. Express 19, 5760–5771 (2011). [CrossRef]
  27. P. Vaity, J. Banerji, and R. P. Singh, “Measuring the topological charge of an optical vortex by using a tilted convex lens,” Phys. Lett. A 377, 1154–1156 (2013). [CrossRef]
  28. M. Dienerowitz, M. Mazilu, P. J. Reece, T. F. Krauss, and K. Dholakia, “Optical vortex trap for resonant confinement of metal nanoparticles,” Opt. Express 16, 4991–4999 (2008). [CrossRef]
  29. A. Kumar, J. Banerji, and R. P. Singh, “Hanbury BrownTwiss-type experiments with optical vortices and observation of modulated intensity correlation on scattering from rotating ground glass,” Phys. Rev. A 86, 013825 (2012). [CrossRef]
  30. A. Kumar, J. Banerji, and R. P. Singh, “Intensity correlation properties of high-order optical vortices passing through a rotating ground-glass plate,” Opt. Lett. 35, 3841–3843 (2010). [CrossRef]
  31. A. Kumar, P. Vaity, and R. P. Singh, “Crafting the core asymmetry to lift the degeneracy of optical vortices,” Opt. Express 19, 6182–6190 (2011). [CrossRef]
  32. A. Y. Bekshaev, M. S. Soskin, and M. V. Vasnetsov, “Transformation of higher-order optical vortices upon focussing by an astigmatic lens,” Opt. Commun. 241, 237–247 (2004). [CrossRef]
  33. A. Y. Bekshaev and A. I. Karamoch, “Astigmatic telescopic transformation of a high-order optical vortex,” Opt. Commun. 281, 5687–5696 (2008). [CrossRef]
  34. M. W. Beijersbergen, L. Allen, H. E. L. O. van der Veen, and J. P. Woerdman, “Astigmatic laser mode converters and transfer of orbital angular momentum,” Opt. Commun. 96, 123–132 (1993). [CrossRef]
  35. J. F. Nye and M. V. Berry, “Dislocations in wave trains,” Proc. R. Soc. London, Ser. A 336, 165–190 (1974). [CrossRef]
  36. J.-L. Thomas and R. Marchiano, “Pseudo angular momentum and topological charge conservation for nonlinear acoustical vortices,” Phys. Rev. Lett. 91, 244302 (2003). [CrossRef]
  37. S. Prabhakar, R. P. Singh, S. Gautam, and D. Angom, “Annihilation of vortex dipoles in an oblate Bose-Einstein condensate,” J. Phys. B 46, 125302 (2013).
  38. A. E. Siegman, Lasers (University Science Books, 1986).
  39. S. Khan, M. A. Pathan, N. A. M. Hassan, and G. Yasmin, “Implicit summation formulae for Hermite and related polynomials,” J. Math. Anal. Appl. 344, 408–416 (2008). [CrossRef]
  40. G. Dattoli, “Hermite-Bessel and Laguerre-Bessel functions: a byproduct of the monomiality principle,” in Advanced Special Functions and Applications (Melfi, 1999), pp. 147–164.
  41. W. Magnus, F. Oberhettinger, and R. P. Soni, Formulas and Theorems for Special Functions of Mathematical Physics (Springer-Verlag, 1966).
  42. G. Dattoli, “Incomplete 2D Hermite polynomials: properties and applications,” J. Math. Anal. Appl. 284, 447–454 (2003). [CrossRef]
  43. R. S. Sirohi, A Course of Experiments with He-Ne Lasers (New Age International, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited