OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1303–1311

Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures

Florian Bigourdan, Jean-Paul Hugonin, and Philippe Lalanne  »View Author Affiliations

JOSA A, Vol. 31, Issue 6, pp. 1303-1311 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (647 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Modeling the field produced by a point-like dipole with an arbitrary location in the presence of a rotationally invariant nanostructure is an important issue in the context of designing nanoantennas. This is a challenging problem, as rotational symmetry is broken when introducing a noncentered dipole. Antennas larger than the wavelength are required for directivity, whereas the dipole–antenna distance is highly subwavelength, so there are two different length scales in the problem. In this paper, we introduce an original S-matrix approach based on an aperiodic-Fourier modal method. The potential of the technique is illustrated by considering three examples. We compare our results with a finite element technique.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(140.4780) Lasers and laser optics : Optical resonators
(230.3990) Optical devices : Micro-optical devices
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:

Original Manuscript: February 5, 2014
Revised Manuscript: April 18, 2014
Manuscript Accepted: April 22, 2014
Published: May 22, 2014

Florian Bigourdan, Jean-Paul Hugonin, and Philippe Lalanne, "Aperiodic-Fourier modal method for analysis of body-of-revolution photonic structures," J. Opt. Soc. Am. A 31, 1303-1311 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Taflove and S. Hagness, Computational Electrodynamics: The Finite-Difference Time-Domain Method (Artech House, 2005).
  2. S. Obayya, Computational Photonics (Wiley, 2010).
  3. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, “Numerical techniques for modeling guided-wave photonic devices,” J. Sel. Top. Quantum Electron. 6, 150–162 (2000). [CrossRef]
  4. E. Silberstein, P. Lalanne, J. P. Hugonin, and Q. Cao, “On the use of grating theory in integrated optics,” J. Opt. Soc. Am. A 18, 2865–2875 (2001). [CrossRef]
  5. P. Bienstman, “Rigorous and efficient modelling of wavelength scale photonic components,” Ph.D. dissertation (University of Ghent, 2001).
  6. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068–1076 (1995). [CrossRef]
  7. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779–784 (1996). [CrossRef]
  8. G. Granet and B. Guizal, “Efficient implementation of the coupled-wave method for metallic lamellar gratings in TM polarization,” J. Opt. Soc. Am. A 13, 1019–1023 (1996). [CrossRef]
  9. P. Lalanne and E. Silberstein, “Fourier-modal methods applied to waveguide computational problems,” Opt. Lett. 25, 1092–1094 (2000). [CrossRef]
  10. J.-P. Hugonin and P. Lalanne, “Perfectly matched layers as nonlinear coordinate transforms: a generalized formalization,” J. Opt. Soc. Am. A 22, 1844–1849 (2005). [CrossRef]
  11. G. Lecamp, J. P. Hugonin, and P. Lalanne, “Theoretical and computational concepts for periodic optical waveguides,” Opt. Express 15, 11042–11060 (2007). [CrossRef]
  12. J. Ctyroky, P. Kwiecien, and I. Richter, “Fourier series-based bidirectional propagation algorithm with adaptive spatial resolution,” J. Lightwave Technol. 28, 2969–2976 (2010). [CrossRef]
  13. M. Pisarenco, J. Maubach, I. Setija, and R. Mattheij, “Aperiodic-Fourier modal method in contrast-field formulation for simulation of scattering from finite structures,” J. Opt. Soc. Am. A 27, 2423–2431 (2010). [CrossRef]
  14. M. Besbes, J. P. Hugonin, P. Lalanne, S. van Haver, O. T. A. Janssen, A. M. Nugrowati, M. Xu, S. F. Pereira, H. P. Urbach, A. S. van de Nes, P. Bienstman, G. Granet, A. Moreau, S. Helfert, M. Sukharev, T. Seideman, F. I. Baida, B. Guizal, and D. Van Labeke, “Numerical analysis of a slit-groove diffraction problem,” J. Eur. Opt. Soc. Rapid Pub. 2, 07022 (2007). [CrossRef]
  15. N. Bonod, E. Popov, and M. Nevière, “Differential theory of diffraction by finite cylindrical objects,” J. Opt. Soc. Am. A 22, 481–490 (2005). [CrossRef]
  16. L. Li, “Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings,” J. Opt. Soc. Am. A 13, 1024–1035 (1996). [CrossRef]
  17. I. Friedler, P. Lalanne, J. P. Hugonin, J. Claudon, J. M. Gérard, A. Beveratos, and I. Robert-Philip, “Efficient photonic mirrors for semiconductor nanowires,” Opt. Lett. 33, 2635–2637 (2008). [CrossRef]
  18. I. Friedler, C. Sauvan, J. P. Hugonin, P. Lalanne, J. Claudon, and J. M. Gérard, “Solid-state single photon sources: the nanowire antenna,” Opt. Express 17, 2095–2110 (2009). [CrossRef]
  19. I. S. Maksymov, M. Besbes, J. P. Hugonin, J. Yang, A. Beveratos, I. Sagnes, I. Robert-Philip, and P. Lalanne, “Metal-coated nanocylinder cavity for broadband nonclassical light emission,” Phys. Rev. Lett. 105, 180502 (2010). [CrossRef]
  20. C. Sauvan, J. P. Hugonin, I. S. Maksymov, and P. Lalanne, “Theory of the spontaneous optical emission of nanosize photonic and plasmon resonators,” Phys. Rev. Lett. 110, 237401 (2013). [CrossRef]
  21. A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Three-dimensional analysis of cylindrical microresonators based on the aperiodic-Fourier modal method,” J. Opt. Soc. Am. A 25, 667 (2008). [CrossRef]
  22. A. Armaroli, A. Morand, P. Benech, G. Bellanca, and S. Trillo, “Comparative analysis of a planar slotted microdisk resonator,” J. Lightwave Technol. 27, 4009–4016 (2009). [CrossRef]
  23. D. Elvira, R. Braive, G. Beaudoin, I. Sagnes, J.-P. Hugonin, I. Abram, I. Robert-Philip, P. Lalanne, and A. Beveratos, “Broadband enhancement and inhibition of single quantum dot emission in plasmonic nano-cavities operating at telecommunications wavelengths,” Appl. Phys. Lett. 103, 061113 (2013). [CrossRef]
  24. C. Belacel, B. Habert, F. Bigourdan, F. Marquier, J.-P. Hugonin, S. Michaelis de Vasconcellos, Lafosse, L. Coolen, C. Schwob, C. Javaux, B. Dubertret, J.-J. Greffet, P. Senellart, and A. Maitre, “Controlling spontaneous emission with plasmonic optical patch antennas,” Nano Lett. 13, 1516–1521 (2013).
  25. F. Bigourdan, F. Marquier, J.-P. Hugonin, and J.-J. Greffet, “Design of highly efficient metallo-dielectric patch antennas for single-photon emission,” Opt. Express 22, 2337–2347 (2014). [CrossRef]
  26. P. Bienstman and R. Baets, “Advanced boundary conditions for eigenmode expansion models,” Opt. Quantum Electron. 34, 523–540 (2002).
  27. L. Li, “Use of Fourier series in the analysis of discontinuous periodic structures,” J. Opt. Soc. Am. A 13, 1870–1876 (1996). [CrossRef]
  28. M. Abramovitz and I. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables (Dover, 1964).
  29. P. Lalanne and M.-P. Jurek, “Computation of the near-field pattern with the coupled-wave method for transverse magnetic polarization,” J. Mod. Opt. 45, 1357–1374 (1998). [CrossRef]
  30. Q. Bai, M. Perrin, C. Sauvan, J.-P. Hugonin, and P. Lalanne, “Efficient and intuitive method for the analysis of light scattering by a resonant nanostructure,” Opt. Express 21, 27371–27382 (2013). [CrossRef]
  31. R. Esteban, T. V. Teperik, and J.-J. Greffet, “Optical patch antennas for single photon emission using surface plasmon resonances,” Phys. Rev. Lett. 104, 026802 (2010). [CrossRef]
  32. E. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  33. G. Granet, “Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution,” J. Opt. Soc. Am. A 16, 2510–2516 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited