OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 6 — Jun. 1, 2014
  • pp: 1337–1347

Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy

Jacopo Antonello, Tim van Werkhoven, Michel Verhaegen, Hoa H. Truong, Christoph U. Keller, and Hans C. Gerritsen  »View Author Affiliations

JOSA A, Vol. 31, Issue 6, pp. 1337-1347 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3154 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical aberrations have detrimental effects in multiphoton microscopy. These effects can be curtailed by implementing model-based wavefront sensorless adaptive optics, which only requires the addition of a wavefront shaping device, such as a deformable mirror (DM) to an existing microscope. The aberration correction is achieved by maximizing a suitable image quality metric. We implement a model-based aberration correction algorithm in a second-harmonic microscope. The tip, tilt, and defocus aberrations are removed from the basis functions used for the control of the DM, as these aberrations induce distortions in the acquired images. We compute the parameters of a quadratic polynomial that is used to model the image quality metric directly from experimental input–output measurements. Finally, we apply the aberration correction by maximizing the image quality metric using the least-squares estimate of the unknown aberration.

© 2014 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(010.7350) Atmospheric and oceanic optics : Wave-front sensing
(180.5810) Microscopy : Scanning microscopy
(220.1000) Optical design and fabrication : Aberration compensation
(110.0113) Imaging systems : Imaging through turbid media
(180.4315) Microscopy : Nonlinear microscopy

ToC Category:

Original Manuscript: March 7, 2014
Revised Manuscript: April 23, 2014
Manuscript Accepted: April 25, 2014
Published: May 30, 2014

Virtual Issues
Vol. 9, Iss. 8 Virtual Journal for Biomedical Optics

Jacopo Antonello, Tim van Werkhoven, Michel Verhaegen, Hoa H. Truong, Christoph U. Keller, and Hans C. Gerritsen, "Optimization-based wavefront sensorless adaptive optics for multiphoton microscopy," J. Opt. Soc. Am. A 31, 1337-1347 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. Strickler, and W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990). [CrossRef]
  2. P. J. Campagnola, A. Lewis, L. M. Loew, H. A. Clark, and W. A. Mohler, “Second-harmonic imaging microscopy of living cells,” J. Biomed. Opt. 6, 277–286 (2001). [CrossRef]
  3. M. J. Booth, “Adaptive optics in microscopy,” Phil. Trans. R. Soc. A 365, 2829–2843 (2007). [CrossRef]
  4. R. Tyson, Principles of Adaptive Optics (CRC, 2010).
  5. S. A. Rahman and M. J. Booth, “Direct wavefront sensing in adaptive optical microscopy using backscattered light,” Appl. Opt. 52, 5523–5532 (2013). [CrossRef]
  6. T. I. M. van Werkhoven, J. Antonello, H. H. Truong, M. Verhaegen, H. C. Gerritsen, and C. U. Keller, “Snapshot coherence-gated direct wavefront sensing for multi-photon microscopy,” Opt. Express 22, 9715–9733 (2014). [CrossRef]
  7. T. van Werkhoven, H. Truong, J. Antonello, R. Fraanje, H. Gerritsen, M. Verhaegen, and C. Keller, “Coherence-gated wavefront sensing for microscopy using fringe analysis,” Proc. SPIE 8253, 82530E (2012). [CrossRef]
  8. M. Rueckel, J. A. Mack-Bucher, and W. Denk, “Adaptive wavefront correction in two-photon microscopy using coherence-gated wavefront sensing,” Proc. Natl. Acad. Sci. USA 103, 17137–17142 (2006). [CrossRef]
  9. J. W. Cha, J. Ballesta, and P. T. C. So, “Shack–Hartmann wavefront-sensor-based adaptive optics system for multiphoton microscopy,” J. Biomed. Opt. 15, 046022 (2010). [CrossRef]
  10. J. M. Bueno, E. J. Gualda, and P. Artal, “Adaptive optics multiphoton microscopy to study ex vivo ocular tissues,” J. Biomed. Opt. 15, 066004 (2010). [CrossRef]
  11. P. Artal, S. Marcos, R. Navarro, and D. R. Williams, “Odd aberrations and double-pass measurements of retinal image quality,” J. Opt. Soc. Am. A 12, 195–201 (1995). [CrossRef]
  12. O. Azucena, J. Crest, J. Cao, W. Sullivan, P. Kner, D. Gavel, D. Dillon, S. Olivier, and J. Kubby, “Wavefront aberration measurements and corrections through thick tissue using fluorescent microsphere reference beacons,” Opt. Express 18, 17521–17532 (2010). [CrossRef]
  13. R. Aviles-Espinosa, J. Andilla, R. Porcar-Guezenec, O. E. Olarte, M. Nieto, X. Levecq, D. Artigas, and P. Loza-Alvarez, “Measurement and correction of in vivo sample aberrations employing a nonlinear guide-star in two-photon excited fluorescence microscopy,” Biomed. Opt. Express 2, 3135–3149 (2011). [CrossRef]
  14. M. Shaw, K. O’Holleran, and C. Paterson, “Investigation of the confocal wavefront sensor and its application to biological microscopy,” Opt. Express 21, 19353–19362 (2013). [CrossRef]
  15. X. Tao, A. Norton, M. Kissel, O. Azucena, and J. Kubby, “Adaptive optical two-photon microscopy using autofluorescent guide stars,” Opt. Lett. 38, 5075–5078 (2013). [CrossRef]
  16. X. Tao, Z. Dean, C. Chien, O. Azucena, D. Bodington, and J. Kubby, “Shack–Hartmann wavefront sensing using interferometric focusing of light onto guide-stars,” Opt. Express 21, 31282–31292 (2013). [CrossRef]
  17. N. Ji, D. E. Milkie, and E. Betzig, “Adaptive optics via pupil segmentation for high-resolution imaging in biological tissues,” Nat. Methods 7, 141–147 (2009). [CrossRef]
  18. D. E. Milkie, E. Betzig, and N. Ji, “Pupil-segmentation-based adaptive optical microscopy with full-pupil illumination,” Opt. Lett. 36, 4206–4208 (2011). [CrossRef]
  19. G. Vdovin, “Optimization-based operation of micromachined deformable mirrors,” Proc. SPIE 3353, 902–909 (1998). [CrossRef]
  20. O. Albert, L. Sherman, G. Mourou, T. B. Norris, and G. Vdovin, “Smart microscope: an adaptive optics learning system for aberration correction in multiphoton confocal microscopy,” Opt. Lett. 25, 52–54 (2000). [CrossRef]
  21. M. A. Vorontsov, “Decoupled stochastic parallel gradient descent optimization for adaptive optics: integrated approach for wave-front sensor information fusion,” J. Opt. Soc. Am. A 19, 356–368 (2002). [CrossRef]
  22. P. Marsh, D. Burns, and J. Girkin, “Practical implementation of adaptive optics in multiphoton microscopy,” Opt. Express 11, 1123–1130 (2003). [CrossRef]
  23. L. Murray, J. C. Dainty, and E. Daly, “Wavefront correction through image sharpness maximization,” Proc. SPIE 5823, 40–47 (2005). [CrossRef]
  24. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, “Exploration of the optimisation algorithms used in the implementation of adaptive optics in confocal and multiphoton microscopy,” Microsc. Res. Tech. 67, 36–44 (2005). [CrossRef]
  25. M. Booth, “Wave front sensor-less adaptive optics: a model-based approach using sphere packings,” Opt. Express 14, 1339–1352 (2006). [CrossRef]
  26. J. Antonello, M. Verhaegen, R. Fraanje, T. van Werkhoven, H. C. Gerritsen, and C. U. Keller, “Semidefinite programming for model-based sensorless adaptive optics,” J. Opt. Soc. Am. A 29, 2428–2438 (2012). [CrossRef]
  27. M. A. A. Neil, M. J. Booth, and T. Wilson, “New modal wave-front sensor: a theoretical analysis,” J. Opt. Soc. Am. A 17, 1098–1107 (2000). [CrossRef]
  28. M. J. Booth, M. A. A. Neil, and T. Wilson, “New modal wave-front sensor: application to adaptive confocal fluorescence microscopy and two-photon excitation fluorescence microscopy,” J. Opt. Soc. Am. A 19, 2112–2120 (2002). [CrossRef]
  29. D. Débarre, M. J. Booth, and T. Wilson, “Image based adaptive optics through optimisation of low spatial frequencies,” Opt. Express 15, 8176–8190 (2007). [CrossRef]
  30. M. J. Booth, “Wavefront sensorless adaptive optics for large aberrations,” Opt. Lett. 32, 5–7 (2007). [CrossRef]
  31. D. Débarre, E. J. Botcherby, M. J. Booth, and T. Wilson, “Adaptive optics for structured illumination microscopy,” Opt. Express 16, 9290–9305 (2008). [CrossRef]
  32. D. Débarre, E. J. Botcherby, T. Watanabe, S. Srinivas, M. J. Booth, and T. Wilson, “Image-based adaptive optics for two-photon microscopy,” Opt. Lett. 34, 2495–2497 (2009). [CrossRef]
  33. A. Jesacher, A. Thayil, K. Grieve, D. Débarre, T. Watanabe, T. Wilson, S. Srinivas, and M. Booth, “Adaptive harmonic generation microscopy of mammalian embryos,” Opt. Lett. 34, 3154–3156 (2009). [CrossRef]
  34. A. Facomprez, E. Beaurepaire, and D. Débarre, “Accuracy of correction in modal sensorless adaptive optics,” Opt. Express 20, 2598–2612 (2012). [CrossRef]
  35. J. Zeng, P. Mahou, M.-C. Schanne-Klein, E. Beaurepaire, and D. Débarre, “3D resolved mapping of optical aberrations in thick tissues,” Biomed. Opt. Express 3, 1898–1913 (2012). [CrossRef]
  36. H. Song, R. Fraanje, G. Schitter, H. Kroese, G. Vdovin, and M. Verhaegen, “Model-based aberration correction in a closed-loop wavefront-sensor-less adaptive optics system,” Opt. Express 18, 24070–24084 (2010). [CrossRef]
  37. H. Linhai and C. Rao, “Wavefront sensorless adaptive optics: a general model-based approach,” Opt. Express 19, 371–379 (2011). [CrossRef]
  38. H. W. Yoo, M. Verhaegen, M. van Royen, and G. Schitter, “Automated adjustment of aberration correction in scanning confocal microscopy,” in IEEE International Instrumentation and Measurement Technology Conference (I2MTC) (IEEE, 2012), pp. 1083–1088.
  39. R. J. Noll, “Zernike polynomials and atmospheric turbulence,” J. Opt. Soc. Am. 66, 207–211 (1976). [CrossRef]
  40. A. Thayil and M. Booth, “Self calibration of sensorless adaptive optical microscopes,” J. Eur. Opt. Soc. 6, 11045 (2011). [CrossRef]
  41. C. Paterson, I. Munro, and J. Dainty, “A low cost adaptive optics system using a membrane mirror,” Opt. Express 6, 175–185 (2000). [CrossRef]
  42. G. Vdovin, O. Soloviev, M. Loktev, and V. Patlan, OKO Guide to Adaptive Optics, 4th ed. (Flexible Optical BV, 2013).
  43. B. Wang and M. J. Booth, “Optimum deformable mirror modes for sensorless adaptive optics,” Opt. Commun. 282, 4467–4474 (2009). [CrossRef]
  44. E. Fernandez and P. Artal, “Membrane deformable mirror for adaptive optics: performance limits in visual optics,” Opt. Express 11, 1056–1069 (2003). [CrossRef]
  45. M. Booth, T. Wilson, H.-B. Sun, T. Ota, and S. Kawata, “Methods for the characterization of deformable membrane mirrors,” Appl. Opt. 44, 5131–5139 (2005). [CrossRef]
  46. P. C. Hansen, Discrete Inverse Problems: Insight and Algorithms (SIAM, 2010), Vol. 7.
  47. D. Débarre, A. Facomprez, and E. Beaurepaire, “Assessing correction accuracy in image-based adaptive optics,” Proc. SPIE 8253, 82530F (2012). [CrossRef]
  48. D. Torrieri, “Statistical theory of passive location systems,” IEEE Trans. Aeros. Electron. Syst. AES-20, 183–198 (1984). [CrossRef]
  49. A. Beck, P. Stoica, and J. Li, “Exact and approximate solutions of source localization problems,” IEEE Trans. Signal Process. 56, 1770–1778 (2008). [CrossRef]
  50. J. J. Moré, “Generalizations of the trust region problem,” Optim. Methods Softw. 2, 189–209 (1993). [CrossRef]
  51. J. C. Lagarias, J. A. Reeds, M. H. Wright, and P. E. Wright, “Convergence properties of the Nelder–Mead simplex method in low dimensions,” SIAM J. Optim. 9, 112–147 (1998). [CrossRef]
  52. M. Andersen, J. Dahl, and L. Vandenberghe, “CVXOPT: A Python package for convex optimization, version 1.1.6,” available at http://cvxopt.org (2013).
  53. M. Andersen, J. Dahl, Z. Liu, and L. Vandenberghe, “Interior-point methods for large-scale cone programming,” in Optimization for Machine Learning, S. Sra, S. Nowozin, and S. J. Wright, eds. (MIT, 2011), pp. 55–83.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited