OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1408–1415

Computational aspects of the through-focus characteristics of the human eye

D. Ramos-López, A. Martínez-Finkelshtein, and D. Robert Iskander  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1408-1415 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001408


View Full Text Article

Enhanced HTML    Acrobat PDF (735 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Calculating through-focus characteristics of the human eye from a single objective measurement of wavefront aberration can be accomplished through a range of methods that are inherently computationally cumbersome. A simple yet accurate and computationally efficient method is developed, which combines the philosophy of the extended Nijboer–Zernike approach with the radial-basis-function-based approximation of the complex pupil function. The main advantage of the proposed technique is that the increase of the computational cost for a vector-valued defocus parameter is practically negligible in comparison to the corresponding scalar-valued defocus parameter.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(330.5370) Vision, color, and visual optics : Physiological optics
(330.7326) Vision, color, and visual optics : Visual optics, modeling

ToC Category:
Vision, Color, and Visual Optics

History
Original Manuscript: January 16, 2014
Revised Manuscript: April 22, 2014
Manuscript Accepted: April 30, 2014
Published: June 10, 2014

Citation
D. Ramos-López, A. Martínez-Finkelshtein, and D. Robert Iskander, "Computational aspects of the through-focus characteristics of the human eye," J. Opt. Soc. Am. A 31, 1408-1415 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1408


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Artal, S. Marcos, I. Miranda, and M. Ferro, “Through focus image quality of eyes implanted with monofocal and multifocal intraocular lenses,” Opt. Eng. 34, 772–779 (1995). [CrossRef]
  2. S. Marcos, S. Barbero, and I. Jimenez-Alfaro, “Optical quality and depth-of-field of eyes implanted with spherical and aspheric intraocular lenses,” J. Refract. Surg. 21, 1–13 (2005).
  3. P. A. Piers, H. A. Weeber, P. Artal, and S. Norrby, “Theoretical comparison of aberration-correcting customized and aspheric intraocular lenses,” J. Refract. Surg. 23, 374–384 (2007).
  4. S. Marcos, E. Moreno, and R. Navarro, “The depth-of-field of the human eye from objective and subjective measurements,” Vis. Res. 39, 2039–2049 (1999). [CrossRef]
  5. B. Wang and K. J. Ciuffreda, “Depth-of-focus of the human eye: theory and clinical implications,” Surv. Ophthalmol. 51, 75–85 (2006). [CrossRef]
  6. D. A. Atchison, “Depth of focus of the human eye,” in Presbyopia: Origins, Effects and Treatment, I. Pallikaris, S. Plainis, and W. N. Charman, eds. (Slack Incorporated, 2012).
  7. A. J. Lang, V. Lakshminarayanan, and V. Portney, “Phenomenological model for interpreting the clinical significance of the in vitro optical transfer function,” J. Opt. Soc. Am. A 10, 1600–1610 (1993). [CrossRef]
  8. A. Guirao, J. Porter, D. R. Williams, and I. G. Cox, “Calculated impact of higher-order monochromatic aberrations on retinal image quality in a population of human eyes: erratum,” J. Opt. Soc. Am. A 19, 620–628 (2002). [CrossRef]
  9. L. Llorente, S. Barbero, J. Merayo, and S. Marcos, “Total and corneal optical aberrations induced by laser in situ keratomileusis for hyperopia,” J. Refract. Surg. 20, 203–216 (2004).
  10. M. J. Collins, T. Buehren, and D. R. Iskander, “Retinal image quality, reading and myopia,” Vis. Res. 46, 196–215 (2006). [CrossRef]
  11. B. Vasudevan, J. K. Ciuffreda, and B. Wang, “Subjective and objective depth-of-focus,” J. Mod. Opt. 54, 1307–1316 (2007). [CrossRef]
  12. L. N. Thibos, X. Hong, A. Bradley, and R. A. Applegate, “Accuracy and precision of objective refraction from wavefront aberrations,” J. Vis. 4(4):9 (2004). [CrossRef]
  13. X. Cheng, A. Bradley, and L. N. Thibos, “Predicting subjective judgment of best focus with objective image quality metrics,” J. Vis. 4(4):7 (2004). [CrossRef]
  14. G. E. Legge, K. T. Mullen, G. C. Woo, and F. W. Campbell, “Tolerance to visual defocus,” J. Opt. Soc. Am. A 4, 851–863 (1987). [CrossRef]
  15. N. M. Jansonius and A. C. Kooijman, “The effect of spherical and other aberrations upon the modulation transfer of the defocused human eye,” Ophthalmic Physiolog. Opt. 18, 504–513 (1998).
  16. F. Yi, D. R. Iskander, and M. J. Collins, “Estimation of the depth of focus from wavefront measurements,” J. Vis. 10(4):3 (2010). [CrossRef]
  17. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329–2348 (2002). [CrossRef]
  18. J. Tarrant, A. Roorda, and C. F. Wildsoet, “Determining the accommodative response from wavefront aberrations,” J. Vis. 10(5):4 (2010). [CrossRef]
  19. D. R. Iskander, B. A. Davis, M. J. Collins, and R. Franklin, “Objective refraction from monochromatic wavefront aberrations via Zernike power polynomials,” Ophthalmic Physiolog. Opt. 27, 245–255 (2007).
  20. J. Nam, L. N. Thibos, and D. R. Iskander, “Zernike radial slope polynomials for wavefront reconstruction and refraction,” J. Opt. Soc. Am. A 26, 1035–1048 (2009). [CrossRef]
  21. A. R. FitzGerrell, E. R. Dowski, and W. T. Cathey, “Defocus transfer function for circularly symmetric pupils,” Appl. Opt. 36, 5796–5804 (1997). [CrossRef]
  22. J. Schwiegerling, “Analysis of the optical performance of presbyopia treatments with the defocus transfer function,” J. Refract. Surg. 23, 965–971 (2007).
  23. J. Schwiegerling and J. Choi, “Application of the polychromatic defocus transfer function to multifocal lenses,” J. Refract. Surg. 24, 965–969 (2008
  24. A. J. E. M. Janssen, “Extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 849–857 (2002). [CrossRef]
  25. J. J. M. Braat, P. Dirksen, and A. J. E. M. Janssen, “Assessment of an extended Nijboer–Zernike approach for the computation of optical point-spread functions,” J. Opt. Soc. Am. A 19, 858–870 (2002). [CrossRef]
  26. A. Martínez-Finkelshtein, A. M. Delgado, G. M. Castro-Luna, A. Zarzo, and J. L. Alió, “Comparative analysis of some modal reconstruction methods of the shape of the cornea from corneal elevation data,” Investig. Ophthalmol. Vis. Sci. 50, 5639–5645 (2009). [CrossRef]
  27. A. Martínez-Finkelshtein, D. Ramos-López, G. M. Castro-Luna, and J. L. Alió, “Adaptive corneal modeling from keratometric data,” Investig. Ophthalmol. Vis. Sci. 52, 4963–4970 (2011). [CrossRef]
  28. M. Montoya-Hernández, M. Servín, D. Malacara-Hernández, and G. Paez, “Wavefront fitting using Gaussian functions,” Opt. Commun. 163, 259–269 (1999). [CrossRef]
  29. D. H. Bailey and P. N. Swartztrauber, “A fast method for the numerical evaluation of continuous Fourier and Laplace transforms,” SIAM J. Sci. Comput. 15, 1105–1110 (1994). [CrossRef]
  30. E. Candès, L. Demanet, and L. Ying, “A fast butterfly algorithm for the computation of Fourier integral operators,” Multiscale Model. Simul. 7, 1727–1750 (2009). [CrossRef]
  31. M. Gai and R. Cancelliere, “An efficient point spread function construction method,” Mon. Not. R. Astron. Soc. 377, 1337–1342 (2007). [CrossRef]
  32. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark, eds., NIST Handbook of Mathematical Functions (Cambridge University, 2010).
  33. G. E. Fasshauer, Meshfree Approximation Methods with Matlab (World Scientific, 2007).
  34. P. C. Hansen, V. Pereyra, and G. Scherer, Least Squares Data Fitting with Applications (Johns Hopkins University, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited