OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1462–1467

Structural design and characteristics of dual-mode fibers with equalized group velocity

Florence Y. M. Chan and Gopinath Mudhana  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1462-1467 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001462


View Full Text Article

Enhanced HTML    Acrobat PDF (717 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We investigate how the index profile of a few-mode fiber (FMF) can be designed so that group velocities of the two lowest-order modes can be equalized at a normalized frequency, which is below the cut-off frequency of the LP21 mode. This can be achieved using a single-clad power-law profile with a sufficiently large profile exponent or a double-clad profile consisting of a graded-core surrounded by a sufficiently thick depressed inner cladding without index jump at their interface. The fabrication tolerances, effective index differences, intramodal dispersion differences, and effective mode areas of various single- and double-clad profiles are compared. The results show that, in comparison to single-clad fibers, double-clad fibers are capable of producing higher fabrication tolerances and reduced sensitivity of group delay difference to wavelength by three and two orders of magnitude, respectively. Our analyses provide insights into the design of FMFs, which will facilitate future development of high-capacity mode division long-haul transmission systems.

© 2014 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2310) Fiber optics and optical communications : Fiber optics
(060.2400) Fiber optics and optical communications : Fiber properties
(130.2790) Integrated optics : Guided waves
(130.2035) Integrated optics : Dispersion compensation devices

ToC Category:
Fiber Optics and Optical Communications

History
Original Manuscript: January 28, 2014
Revised Manuscript: April 10, 2014
Manuscript Accepted: May 6, 2014
Published: June 12, 2014

Citation
Florence Y. M. Chan and Gopinath Mudhana, "Structural design and characteristics of dual-mode fibers with equalized group velocity," J. Opt. Soc. Am. A 31, 1462-1467 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1462


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Ip, A. P. T. Lau, D. J. F. Barros, and J. M. Kahn, “Coherent detection in optical fiber systems,” Opt. Express 16, 753–791 (2008). [CrossRef]
  2. C. P. Tsekrekos, A. Martinez, F. M. Huijskens, and A. M. J. Koonen, “Design considerations for transparent mode group diversity multiplexing,” IEEE Photon. Technol. Lett. 18, 2359–2361 (2006). [CrossRef]
  3. Y. Kokubun and M. Koshiba, “Novel multi-core fibers for mode division multiplexing: proposal and design principle,” IEICE Electron. Express 6, 522–528 (2009).
  4. K. Imamura, K. Mukasa, and T. Yagi, “Multi-core holey fibers for the long-distance (>100  km) ultra large capacity transmission,” in Optical Fiber Communication Conference (OFC 2009), OSA Technical Digest Series (Optical Society of America, 2009), paper OTuC3.
  5. A. A. Amin, A. Li, S. Chen, X. Chen, G. Gao, and W. Shieh, “Dual-LP11 mode 4 × 4 MIMO-OFDM transmission over a two-mode fiber,” Opt. Express 19, 16672–16679 (2011). [CrossRef]
  6. S. Randel, R. Ryf, A. Sierra, P. J. Winzer, A. H. Gnauck, C. A. Bolle, R.-J. Essiambre, D. W. Peckham, A. McCurdy, and R. Lingle, “6 × 56-Gb/s mode-division multiplexed transmission over 33-km few-mode fiber enabled by 6 × 6 MIMO equalization,” Opt. Express 19, 16697–16707 (2011). [CrossRef]
  7. N. Riesen and J. D. Love, “Dispersion equalization in few-mode fibres,” in 35th Australian Conference on Optical Fibre Technology (ACOFT) (2010), pp. 1–3.
  8. M. Y. Chen, Y. R. Li, Y. Zhang, Y. F. Zhu, Y. K. Zhang, and J. Zhou, “Design of dual-mode optical fibres for the FTTH applications,” J. Opt. 13, 015402 (2011). [CrossRef]
  9. F. Yaman, N. Bai, B. Zhu, T. Wang, and G. Li, “Long distance transmission in few-mode fibers,” Opt. Express 18, 13250–13257 (2010). [CrossRef]
  10. N. Hanzawa, K. Saitoh, T. Sakamoto, T. Matsui, S. Tomita, and M. Koshiba, “Demonstration of mode-division multiplexing transmission over 10  km two-mode fiber withmode coupler,” in Optical Fiber Communication Conference (OFC 2011), OSA Technical Digest Series (Optical Society of America, 2011), paper OWA4.
  11. A. A. Amin, A. Li, X. Chen, and W. Shieh, “LP01/LP11 dual-mode and dual-polarisation CO-OFDM transmission on two-mode fibre,” Electron. Lett. 47, 606–608 (2011). [CrossRef]
  12. A. Li, A. A. Amin, X. Chen, and W. Shieh, “Reception of mode and polarization multiplexed 107-Gb/s CO-OFDM signal over a two-mode fiber,” in Optical Fiber Communication Conference, OFC 2011, OSA Technical Digest Series (Optical Society of America, 2011), paper PDPB8.
  13. M. M. Cvijetic and G. Lukatela, “Design considerations of dispersion-free dual-mode optical fibers: 1.55  μm wavelength operation,” IEEE J. Quantum Electron. 23, 469–472 (1987). [CrossRef]
  14. J. Sakai, K. Kitayama, M. Ikeda, Y. Kato, and T. Kumura, “Design considerations of broadband dual-mode optical fibers,” IEEE Trans. Microw. Theory Tech. 26, 658–665 (1978). [CrossRef]
  15. K. Kitayama, Y. Kato, S. Seikai, and N. Uchida, “Structural optimization for two-mode fiber: theory and experiment,” IEEE J. Quantum Electron. 17, 1057–1063 (1981). [CrossRef]
  16. L. G. Cohen, W. G. French, and C. Lin, “Propagation characteristics of double-mode fibers,” in Optical Fiber Communication Conference (OFC 1979), OSA Technical Digest Series (Optical Society of America, 1979), paper ThC2.
  17. Y. Kata, K. Kitayama, and S. Seikai, “Design consideration on broad-band w-type two-mode optical fibers,” IEEE Trans. Microw. Theory Tech. 30, 1–5 (1982). [CrossRef]
  18. M. J. Li and D. A. Nolan, “Optical transmission fiber design evolution,” J. Lightwave Technol. 26, 1079–1092 (2008). [CrossRef]
  19. M. Monerie, “Propagation in doubly clad single-mode fibers,” IEEE Trans. Microw. Theory Tech. 30, 381–388 (1982). [CrossRef]
  20. S. Kawakami, S. Nishida, and M. Sumi, “Transmission characteristics of W-type optical fibres,” Proc. IEEE 123, 586–590 (1976).
  21. S. Kawakami and S. Nishida, “Characteristics of a doubly clad optical fiber with a low-index inner cladding,” IEEE J. Quantum Electron. 10, 879–887 (1974). [CrossRef]
  22. J. M. Senior, Optical Fiber Communications (Prentice Hall, 1992).
  23. D. Gloge, “Weakly guiding fibers,” Appl. Opt. 10, 2252–2258 (1971). [CrossRef]
  24. G. P. Agrawal, Nonlinear Fiber Optics (Academic, 2001).
  25. F. Buchali and H. Bülow, “Adaptive PMD compensation by electrical and optical techniques,” IEEE J. Lightwave Technol. 22, 1116–1126 (2004). [CrossRef]
  26. R. Noé, D. Sandel, M. Yoshida-Dierolf, S. Hinz, V. Mirvoda, A. Schöpflin, C. Glingener, E. Gottwald, C. Scheerer, G. Fischer, T. Weyrauch, and W. Haase, “Polarization mode dispersion compensation at 10, 20, and 40  Gb/s with various optical equalizers,” J. Lightwave Technol. 17, 1602–1616 (1999). [CrossRef]
  27. H. Rosenfeldt, R. Ulrich, U. Feiste, R. Ludwig, H. G. Weber, and A. Ehrhardt, “PMD compensation in 10  Gb/s NRZ field experiment using polarimetric error signal,” Electron. Lett. 36, 448–450 (2000). [CrossRef]
  28. E. Ip and J. M. Kahn, “Digital equalization of chromatic dispersion and polarization mode dispersion,” IEEE J. Lightwave Technol. 25, 2033–2043 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited