OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1481–1484

Changing correlation into anticorrelation by superposing thermal and laser light

Jianbin Liu, Yu Zhou, Fu-Li Li, and Zhuo Xu  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1481-1484 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001481


View Full Text Article

Enhanced HTML    Acrobat PDF (595 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Correlation can be changed into anticorrelation by superposing thermal and laser light with the same frequency and polarization. Two-photon interference theory is employed to interpret this phenomenon. An experimental scheme is designed to verify the theoretical predictions by employing pseudothermal light to simulate thermal light. The experimental results are consistent with the theoretical results.

© 2014 Optical Society of America

OCIS Codes
(030.5290) Coherence and statistical optics : Photon statistics
(260.3160) Physical optics : Interference

ToC Category:
Physical Optics

History
Original Manuscript: March 18, 2014
Revised Manuscript: April 26, 2014
Manuscript Accepted: May 11, 2014
Published: June 13, 2014

Citation
Jianbin Liu, Yu Zhou, Fu-Li Li, and Zhuo Xu, "Changing correlation into anticorrelation by superposing thermal and laser light," J. Opt. Soc. Am. A 31, 1481-1484 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1481


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Graingier, G. Roger, and A. Aspect, “Experimental evidence for a photon anticorrelation effect on a beam splitter—a new light on single-photon interferences,” Europhys. Lett. 1, 173–179 (1986). [CrossRef]
  2. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  3. C. K. Hong, Z. Y. Ou, and L. Mandel, “Measurement of subpicosecond time intervals between two photons by interference,” Phys. Rev. Lett. 59, 2044–2046 (1987). [CrossRef]
  4. Y. H. Shih and C. O. Alley, “New type of Einstein-Podolsky-Rosen-Bohm experiment using pairs of light quanta produced by optical parametric down conversion,” Phys. Rev. Lett. 61, 2921–2924 (1988). [CrossRef]
  5. J. Beugnon, M. P. A. Jones, J. Dingjan, B. Darquié, G. Messin, A. Browaeys, and P. Grangier, “Quantum interference between two single photons emitted by independently trapped atoms,” Nature 440, 779–782 (2006). [CrossRef]
  6. R. Kaltenbaek, B. Blauensteiner, M. Żukowski, M. Aspelmeyer, and A. Zeilinger, “Experimental interference of independent photons,” Phys. Rev. Lett. 96, 240502 (2006). [CrossRef]
  7. P. Maunz, D. L. Moehring, S. Olmschenk, K. C. Younge, D. N. Matsukevich, and C. Manroe, “Quantum interference of photon pairs from two remote trapped atomic ions,” Nat. Phys. 3, 538–541 (2007). [CrossRef]
  8. A. J. Bennett, R. B. Patel, C. A. Nicoll, D. A. Ritchie, and A. J. Shields, “Interference of dissimilar photon sources,” Nat. Phys. 5, 715–717 (2009). [CrossRef]
  9. R. Kaltenbaek, J. Lavoie, D. N. Biggerstaff, and K. J. Resch, “Quantum-inspired interferometry with chirped laser pulses,” Nat. Phys. 4, 864–868 (2008). [CrossRef]
  10. R. Kaltenbaek, J. Lavoie, and K. J. Resch, “Classical analogous of two-photon quantum interference,” Phys. Rev. Lett. 102, 243601 (2009). [CrossRef]
  11. A. V. Belinsky and D. N. Klyshko, “Interference of classical and non-classical light,” Phys. Lett. A 166, 303–307 (1992). [CrossRef]
  12. L. Mandel, “Quantum effects in one-photon and two-photon interference,” Rev. Mod. Phys. 71, S274–S282 (1999). [CrossRef]
  13. Y. H. Shih, An Introduction to Quantum Optics: Photons and Biphoton Physics (CRC Press, 2011).
  14. J. B. Liu, Y. Zhou, F. L. Li, and Z. Xu, “The second-order interference between laser and thermal light,” Europhys. Lett. 105, 64007 (2014). [CrossRef]
  15. R. Loudon, The Quantum Theory of Light, 3rd ed. (Oxford University, 2001).
  16. R. J. Glauber, “The quantum theory of optical coherence,” Phys. Rev. 130, 2529–2539 (1963). [CrossRef]
  17. R. J. Glauber, “Coherent and incoherent states of the radiation field,” Phys. Rev. 131, 2766–2788 (1963). [CrossRef]
  18. R. Hanbury Brown and R. Q. Twiss, “Correlation between photons in two coherent beams of light,” Nature 177, 27–29 (1956). [CrossRef]
  19. R. Hanbury Brown and R. Q. Twiss, “A test of a new type of stellar interferometer on sirius,” Nature 178, 1046–1048 (1956). [CrossRef]
  20. E. C. G. Sudarshan, “Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams,” Phys. Rev. Lett. 10, 277–279 (1963). [CrossRef]
  21. J. H. Shapiro and R. W. Boyd, “The physics of ghost imaging,” Quantum Inf. Process 11, 949–993 (2012). [CrossRef]
  22. R. P. Feynman and A. R. Hibbs, Quantum Mechanics and Path Integrals (McGraw-Hill, 1965).
  23. J. B. Liu, Y. Zhou, W. T. Wang, R. F. Liu, K. He, F. L. Li, and Z. Xu, “Spatial second-order interference of pseudothermal light in a Hong-Ou-Mandel interferometer,” Opt. Express 21, 19209–19218 (2013). [CrossRef]
  24. Y. Zhou, J. Simon, J. B. Liu, and Y. H. Shih, “Third-order correlation function and ghost imaging of chaotic thermal light in the photon counting regime,” Phys. Rev. A 81, 043831 (2010). [CrossRef]
  25. W. Martienssen and E. Spiller, “Coherence and fluctuation in light beams,” Am. J. Phys. 32, 919–926 (1964). [CrossRef]
  26. J. B. Liu, Y. Zhou, W. T. Wang, F. L. Li, and Z. Xu, “Experimental study of the second-order coherence of partially polarized thermal light,” Opt. Commun. 317, 18–23 (2014). [CrossRef]
  27. M. M-Tehrani and L. Mandel, “Intensity fluctuations in a two-mode ring laser,” Phys. Rev. A 17, 694–700 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited