OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1495–1501

Rayleigh approximation for the scattering of small partially charged sand particles

Xingcai Li, Xing Min, and Dandan Liu  »View Author Affiliations

JOSA A, Vol. 31, Issue 7, pp. 1495-1501 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (609 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Based on the Rayleigh approximation, this paper presents the electromagnetic scattering properties of the small partially charged isotropic sphere and those of a similar anisotropic sphere and then discusses the effect of surface charges on particles’ optical properties. The numerical simulation results show that the surface charges on a charged particle can enhance the scattering of the incident waves, and the effect on an anisotropic charged sphere is much greater than that on an isotropic charged particle. Therefore it is necessary to consider the medium property (isotropic or anisotropic) and electric effects of dust particles in the remote sensing of sandstorms.

© 2014 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.1090) Scattering : Aerosol and cloud effects
(290.5850) Scattering : Scattering, particles
(290.5870) Scattering : Scattering, Rayleigh
(290.5825) Scattering : Scattering theory

ToC Category:

Original Manuscript: March 7, 2014
Revised Manuscript: May 9, 2014
Manuscript Accepted: May 9, 2014
Published: June 16, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Xingcai Li, Xing Min, and Dandan Liu, "Rayleigh approximation for the scattering of small partially charged sand particles," J. Opt. Soc. Am. A 31, 1495-1501 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Akhlaq, T. R. Sheltami, and H. T. Mouftah, “A review of techniques and technologies for sand and dust storm detection,” Rev. Environ. Sci. Biotechnol. 11, 305–322 (2012). [CrossRef]
  2. X. Y. Dong, H. Y. Chen, and D. H. Guo, “Microwave and millimeter wave attenuation in sand and dust storms,” IEEE Antennas Wirel. Propag. Lett. 10, 469–471 (2011). [CrossRef]
  3. S. A. Christopher and T. A. Jones, “Satellite and surface-based remote sensing of Saharan dust aerosols,” Remote Sens. Environ. 114, 1002–1007 (2010). [CrossRef]
  4. T. Nousiainen, “Optical modeling of mineral dust particles: a review,” J. Quant. Spectrosc. Radiat. Transfer 110, 1261–1279 (2009). [CrossRef]
  5. L. Xingcai and Z. Beidou, “Comparison research between two EM scattering models for wet sand particle,” J. Ningxia Univ. 34, 35–39 (2013).
  6. L. Xingcai and Z. Beidou, “An equivalent solution for the electromagnetic scattering of multilayer particle,” J. Quant. Spectrosc. Radiat. Transfer 129, 236–240 (2013). [CrossRef]
  7. R. Yang, Z. Wu, and J. You, “The Study of MMW and MW attenuation considering multiple scattering effect in sand and dust storms at slant paths,” Int. J. Infrared Millim. Waves 24, 1383–1392 (2003). [CrossRef]
  8. M. R. I. Z. Elabdin, O. O. Khalifa, and H. E. A. Raouf, “Mathematical model for the prediction of microwave signal attenuation due to duststorm,” Prog. Electromagn. Res. M 6, 139–153 (2009).
  9. S. O. Bashir and N. J. McEwan, “Microwave propagation in dust storms: a review,” Proc. IEEE 133, 241–247 (1986).
  10. A. A. Ali and M. A. Alhaider, “Millimeter wave propagation in arid land: a field study in Riyadh,” IEEE Trans. Antennas Propag. 40, 492–499 (1992). [CrossRef]
  11. Q. S. Dong, Z. W. Zhao, and H. J. Cong, “The mm-Wave attenuation due to sand and dust,” Chin. J. Radio Sci. 11, 29–32 (1996).
  12. Y. H. Zhou, Q. S. He, and X. J. Zheng, “Attenuation of electromagnetic wave propagation in sandstorms incorporating charged sand particles,” Eur. Phys. J. E 17, 181–187 (2005). [CrossRef]
  13. T. Shinbrot and H. J. Herrmann, “Granular matter: static in motion,” Nature 451, 773–774 (2008). [CrossRef]
  14. D. J. Lacks, “Particle clouds: frictile attraction,” Nat. Phys. 6, 324–325 (2010). [CrossRef]
  15. T. Pahtz, H. J. Herrmann, and T. Shinbrot, “Why do particle clouds generate electric charges,” Nat. Phys. 6, 364–368 (2010). [CrossRef]
  16. J. J. Qu, M. H. Yan, G. G. Dong, H. F. Zhang, R. P. Zu, W. Q. Tuo, A. G. Zhao, Z. H. Xiao, F. Li, and B. Yang, “Wind tunnel simulation experiment and investigation on the electrification of sandstorms,” Sci. Chin. Ser. D 47, 529–539 (2004). [CrossRef]
  17. Q. S. He, Y. H. Zhou, and X. J. Zheng, “Effects of charged sand on electromagnetic wave propagation and its scattering field,” Sci. Chin. Ser. G 49, 77–87 (2006). [CrossRef]
  18. L. Xie, X. C. Li, and X. J. Zheng, “Attenuation of an electromagnetic wave by charged dust particles in a sandstorm,” Appl. Opt. 49, 6756–6761 (2010). [CrossRef]
  19. X. Li, L. Xie, and X. Zheng, “The comparison between the Mie theory and the Rayleigh approximation to calculate the EM scattering by partially charged sand,” J. Quant. Spectrosc. Radiat. Transfer 113, 251–258 (2012). [CrossRef]
  20. X. Li and B. Zhang, “The electromagnetic scattering of the charged inhomogeneous sand particle,” J. Quant. Spectrosc. Radiat. Transfer 119, 150–154 (2013). [CrossRef]
  21. C. F. Bohren and D. R. Huffman, in Absorption and Scattering of Light by Small Particles (Wiley, 1983), pp. 82–103.
  22. S.-H. Zhao, Z.-J. Zhou, Q. Zhu, and Y.-Q. Song, “Anisotropic medium sphere in uniform field,” Coll. Phys. 30, 26–28 (2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.
Fig. 4.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited