OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1515–1519

Custom-modified three-dimensional periodic microstructures by pattern-integrated interference lithography

Matthieu C. R. Leibovici and Thomas K. Gaylord  »View Author Affiliations

JOSA A, Vol. 31, Issue 7, pp. 1515-1519 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (949 KB) | SpotlightSpotlight on Optics Open Access

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



By combining interference lithography and projection photolithography concurrently, pattern-integrated interference lithography (PIIL) enables the wafer-scale, rapid, and single-exposure fabrication of multidimensional periodic microstructures that integrate arbitrary functional elements. To date, two-dimensional PIIL has been simulated and experimentally demonstrated. In this paper, we report new simulated results of PIIL exposures for various custom-modified three-dimensional (3D) periodic structures. These results were generated using custom PIIL comprehensive vector modeling. Simulations include mask-integrated and mask-shaped 3D periodic arrangements as well as microcavities on top of or fully embedded within 3D periodic structures. These results indicate PIIL is a viable method for making versatile 3D periodic microstructures.

© 2014 Optical Society of America

OCIS Codes
(110.3960) Imaging systems : Microlithography
(220.4000) Optical design and fabrication : Microstructure fabrication
(260.3160) Physical optics : Interference
(140.3945) Lasers and laser optics : Microcavities
(160.5335) Materials : Photosensitive materials
(110.6895) Imaging systems : Three-dimensional lithography

ToC Category:
Imaging Systems

Original Manuscript: March 27, 2014
Manuscript Accepted: May 11, 2014
Published: June 17, 2014

Virtual Issues
July 21, 2014 Spotlight on Optics

Matthieu C. R. Leibovici and Thomas K. Gaylord, "Custom-modified three-dimensional periodic microstructures by pattern-integrated interference lithography," J. Opt. Soc. Am. A 31, 1515-1519 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. V. Miklyaev, D. C. Meisel, A. Blanco, G. von Freymann, K. Busch, W. Koch, C. Enkrich, M. Deubel, and M. Wegener, “Three-dimensional face-centered-cubic photonic crystal templates by laser holography: fabrication, optical characterization, and band-structure calculations,” Appl. Phys. Lett. 82, 1284–1286 (2003). [CrossRef]
  2. L.-H. Han, G. Mapili, S. Chen, and K. Roy, “Projection microfabrication of three-dimensional scaffolds for tissue engineering,” J. Manuf. Sci. Eng. 130, 021005 (2008). [CrossRef]
  3. S.-G. Park, S.-K. Lee, J.-H. Moon, and S.-M. Yang, “Holographic fabrication of three-dimensional nanostructures for microfluidic passive mixing,” Lab Chip 9, 3144–3150 (2009).
  4. P. V. Braun, S. A. Rinne, and F. Garcia-Santamaria, “Introducing defects in 3D photonic crystals: state of the art,” Adv. Mater. 18, 2665–2678 (2006). [CrossRef]
  5. J. H. Jang, C. K. Ullal, M. Maldovan, T. Gorishnyy, S. Kooi, C. Y. Koh, and E. L. Thomas, “3D micro- and nanostructures via interference lithography,” Adv. Funct. Mater. 17, 3027–3041 (2007). [CrossRef]
  6. W. Mao, Y. Zhong, J. Dong, and H. Wang, “Crystallography of two-dimensional photonic lattices formed by holography of three noncoplanar beams,” J. Opt. Soc. Am. B 22, 1085–1091 (2005). [CrossRef]
  7. L. Z. Cai, X. L. Yang, and Y. R. Wang, “All fourteen Bravais lattices can be formed by interference of four noncoplanar beams,” Opt. Lett. 27, 900–902 (2002). [CrossRef]
  8. G. M. Burrow, M. C. R. Leibovici, and T. K. Gaylord, “Pattern-integrated interference lithography: single-exposure fabrication of photonic-crystal structures,” Appl. Opt. 51, 4028–4041 (2012). [CrossRef]
  9. T. K. Gaylord, M. C. R. Leibovici, and G. M. Burrow, “Pattern-integrated interference [Invited],” Appl. Opt. 52, 61–72 (2013). [CrossRef]
  10. M. C. R. Leibovici and T. K. Gaylord, “Pattern-integrated interference lithography: vector modeling and 1D, 2D, and 3D device structures,” J. Vac. Sci. Technol. B 31, 06F501 (2013). [CrossRef]
  11. M. C. R. Leibovici, G. M. Burrow, and T. K. Gaylord, “Pattern-integrated interference lithography: prospects for nano- and microelectronics,” Opt. Express 20, 23643–23652 (2012). [CrossRef]
  12. G. M. Burrow, M. C. R. Leibovici, J. W. Kummer, and T. K. Gaylord, “Pattern-integrated interference lithography instrumentation,” Rev. Sci. Instrum. 83, 063707 (2012). [CrossRef]
  13. D. E. Sedivy and T. K. Gaylord, “Modeling of multiple-optical-axis pattern-integrated interference lithography systems [Invited],” Appl. Opt. 53, D12–D20 (2014). [CrossRef]
  14. J. L. Stay and T. K. Gaylord, “Three-beam-interference lithography: contrast and crystallography,” Appl. Opt. 47, 3221–3230 (2008). [CrossRef]
  15. R. C. Rumpf and E. G. Johnson, “Fully three-dimensional modeling of the fabrication and behavior of photonic crystals formed by holographic lithography,” J. Opt. Soc. Am. A 21, 1703–1713 (2004). [CrossRef]
  16. W. Y. Tam, “Woodpile and diamond structures by optical interference holography,” J. Opt. A 9, 1076–1081 (2007). [CrossRef]
  17. J. S. King, E. Graugnard, O. M. Roche, D. N. Sharp, J. Scrimgeour, R. G. Denning, A. J. Turberfield, and C. J. Summers, “Infiltration and inversion of holographically defined polymer photonic crystal templates by atomic layer deposition,” Adv. Mater. 18, 1561–1565 (2006). [CrossRef]
  18. N. Tetreault, G. Von Freymann, M. Deubel, M. Hermatschweiler, F. Perez-Willard, S. John, M. Wegener, and G. A. Ozin, “New route to three-dimensional photonic bandgap materials: silicon double inversion of polymer templates,” Adv. Mater. 18, 457–460 (2006). [CrossRef]
  19. D. G. Flagello, T. Milster, and A. E. Rosenbluth, “Theory of high-NA imaging in homogeneous thin films,” J. Opt. Soc. Am. A 13, 53–64 (1996). [CrossRef]
  20. K. Y. Lee, N. LaBianca, S. A. Rishton, S. Zolgharnain, J. D. Gelorme, J. Shaw, and T. H. P. Chang, “Micromachining applications of a high resolution ultrathick photoresist,” J. Vac. Sci. Technol. B 13, 3012–3016 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited