OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1520–1530

Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles

Janaka C. Ranasinghesagara, Carole K. Hayakawa, Mitchell A. Davis, Andrew K. Dunn, Eric O. Potma, and Vasan Venugopalan  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1520-1530 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001520


View Full Text Article

Enhanced HTML    Acrobat PDF (1688 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We develop an efficient method for accurately calculating the electric field of tightly focused laser beams in the presence of specific configurations of microscopic scatterers. This Huygens–Fresnel wave-based electric field superposition (HF-WEFS) method computes the amplitude and phase of the scattered electric field in excellent agreement with finite difference time-domain (FDTD) solutions of Maxwell’s equations. Our HF-WEFS implementation is 2–4 orders of magnitude faster than the FDTD method and enables systematic investigations of the effects of scatterer size and configuration on the focal field. We demonstrate the power of the new HF-WEFS approach by mapping several metrics of focal field distortion as a function of scatterer position. This analysis shows that the maximum focal field distortion occurs for single scatterers placed below the focal plane with an offset from the optical axis. The HF-WEFS method represents an important first step toward the development of a computational model of laser-scanning microscopy of thick cellular/tissue specimens.

© 2014 Optical Society of America

OCIS Codes
(170.0180) Medical optics and biotechnology : Microscopy
(260.1960) Physical optics : Diffraction theory
(290.7050) Scattering : Turbid media

ToC Category:
Scattering

History
Original Manuscript: January 14, 2014
Revised Manuscript: April 28, 2014
Manuscript Accepted: May 7, 2014
Published: June 18, 2014

Virtual Issues
Vol. 9, Iss. 9 Virtual Journal for Biomedical Optics

Citation
Janaka C. Ranasinghesagara, Carole K. Hayakawa, Mitchell A. Davis, Andrew K. Dunn, Eric O. Potma, and Vasan Venugopalan, "Rapid computation of the amplitude and phase of tightly focused optical fields distorted by scattering particles," J. Opt. Soc. Am. A 31, 1520-1530 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1520


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. A. Wilt, L. D. Burns, E. T. W. Ho, K. K. Ghosh, E. A. Mukamel, and M. J. Schnitzer, “Advances in light microscopy for neuroscience,” Annu. Rev. Neurosci. 32, 435–506 (2009). [CrossRef]
  2. P. Kanchanawong and C. M. Waterman, “Advances in light-based imaging of three-dimensional cellular ultrastructure,” Curr. Opin. Cell Biol. 24, 125–133 (2012). [CrossRef]
  3. E. E. Hoover and J. A. Squier, “Advances in multiphoton microscopy technology,” Nat. Photonics 7, 93–101 (2013). [CrossRef]
  4. R. Heintzmann and G. Ficz, “Breaking the resolution limit in light microscopy,” Briefings Funct. Genomics Proteomics 5, 289–301 (2006).
  5. A. Dunn and R. Richards-Kortum, “Three-dimensional computation of light scattering from cells,” IEEE J. Quantum Electron. 2, 898–905 (1996). [CrossRef]
  6. J. R. Mourant, T. Fuselier, J. Boyer, T. M. Johnson, and I. J. Bigio, “Predictions and measurements of scattering and absorption over broad wavelength ranges in tissue phantoms,” Appl. Opt. 36, 949–957 (1997). [CrossRef]
  7. Z. Yaqoob, D. Psaltis, M. S. Feld, and C. Yang, “Optical phase conjugation for turbidity suppression in biological samples,” Nat. Photonics 2, 110–115 (2008). [CrossRef]
  8. I. M. Vellekoop, A. Lagendijk, and A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  9. T. Čižmár, M. Mazilu, and K. Dholakia, “In situ wavefront correction and its application to micromanipulation,” Nat. Photonics 4, 388–394 (2010). [CrossRef]
  10. S. M. Popoff, A. Aubry, G. Lerosey, M. Fink, A. C. Boccara, and S. Gigan, “Exploiting the time-reversal operator for adaptive optics, selective focusing, and scattering pattern analysis,” Phys. Rev. Lett. 107, 263901 (2011). [CrossRef]
  11. I. M. Vellekoop and A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
  12. M. S. Starosta and A. K. Dunn, “Three-dimensional computation of focused beam propagation through multiple biological cells,” Opt. Express 17, 12455–12469 (2009). [CrossRef]
  13. M. A. Yurkin, A. G. Hoekstra, R. S. Brock, and J. Q. Lu, “Systematic comparison of the discrete dipole approximation and the finite difference time domain method for large dielectric scatterers,” Opt. Express 15, 17902–17911 (2007). [CrossRef]
  14. Z. Cui, Y. Han, and Q. Xu, “Numerical simulation of multiple scattering by random discrete particles illuminated by Gaussian beams,” J. Opt. Soc. Am. A 28, 2200–2208 (2011). [CrossRef]
  15. Z. Song, K. Dong, X. H. Hu, and J. Q. Lu, “Monte Carlo simulation of converging laser beams propagating in biological materials,” Appl. Opt. 38, 2944–2949 (1999). [CrossRef]
  16. X. Deng and M. Gu, “Penetration depth of single-, two-, and three-photon fluorescence microscopic imaging through human cortex structures: Monte Carlo simulation,” Appl. Opt. 42, 3321–3329 (2003). [CrossRef]
  17. A. K. Dunn, V. P. Wallace, M. Coleno, M. W. Berns, and B. J. Tromberg, “Influence of optical properties on two-photon fluorescence imaging in turbid samples,” Appl. Opt. 39, 1194–1201 (2000). [CrossRef]
  18. C. K. Hayakawa, V. Venugopalan, V. V. Krishnamachari, and E. O. Potma, “Amplitude and phase of tightly focused laser beams in turbid media,” Phys. Rev. Lett. 103, 43903 (2009). [CrossRef]
  19. C. K. Hayakawa, E. O. Potma, and V. Venugopalan, “Electric field Monte Carlo simulations of focal field distributions produced by tightly focused laser beams in tissues,” Biomed. Opt. Express 2, 278–290 (2011). [CrossRef]
  20. M. Xu, “Electric field Monte Carlo simulation of polarized light propagation in turbid media,” Opt. Express 12, 6530–6539 (2004). [CrossRef]
  21. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge University, 2006).
  22. D. W. Mackowski, “Analysis of radiative scattering for multiple sphere configurations,” Proc. R. Soc. London Ser. A 433, 599–614 (1991). [CrossRef]
  23. M. I. Mishchenko, J. W. Hovenier, and L. D. Travis, eds., Light Scattering by Nonspherical Particles: Theory, Measurements, and Applications (Academic, 2000).
  24. H.-X. Xu, “A new method by extending Mie theory to calculate local field in outside/inside of aggregates of arbitrary spheres,” Phys. Lett. A 312, 411–419 (2003). [CrossRef]
  25. F. Borghese, P. Denti, and R. Saija, Scattering from Model Nonspherical Particles, 2nd ed. (Springer, 2007).
  26. J. P. Barton, D. R. Alexander, and S. A. Schaub, “Internal and near-surface electromagnetic fields for a spherical particle irradiated by a focused laser beam,” J. Appl. Phys. 64, 1632–1639 (1988). [CrossRef]
  27. J. A. Lock, S. Y. Wrbanek, and K. E. Weiland, “Scattering of a tightly focused beam by an optically trapped particle,” Appl. Opt. 45, 3634–3645 (2006). [CrossRef]
  28. J. Lermé, G. Bachelier, P. Billaud, C. Bonnet, M. Broyer, E. Cottancin, S. Marhaba, and M. Pellarin, “Optical response of a single spherical particle in a tightly focused light beam: application to the spatial modulation spectroscopy technique,” J. Opt. Soc. Am. A 25, 493–514 (2008). [CrossRef]
  29. T. X. Hoang, X. Chen, and C. J. R. Sheppard, “Interpretation of the scattering mechanism for particles in a focused beam,” Phys. Rev. A 86, 033817 (2012). [CrossRef]
  30. Y. Jiang, Y. Shao, X. Qu, J. Ou, and H. Hua, “Scattering of a focused Laguerre–Gaussian beam by a spheroidal particle,” J. Opt. 14, 125709 (2012). [CrossRef]
  31. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London Ser. A 253, 349–357 (1959). [CrossRef]
  32. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London Ser. A 253, 358–379 (1959). [CrossRef]
  33. I. R. Çapoğlu, A. Taflove, and V. Backman, “Generation of an incident focused light pulse in FDTD,” Opt. Express 16, 19208–19220 (2008). [CrossRef]
  34. S. A. Prahl, D. D. Duncan, and D. G. Fischer, “Stochastic Huygens and partial coherence propagation through thin tissues,” Proc. SPIE 7573, 75730D (2010). [CrossRef]
  35. C. G. Koay, “A simple scheme for generating nearly uniform distribution of antipodally symmetric points on the unit sphere,” J. Comput. Sci. 2, 377–381 (2011). [CrossRef]
  36. H. C. van de Hulst, Light Scattering by Small Particles (Wiley, 1957).
  37. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  38. C. G. Koay, “Highly specific but edgily effective data processing (HI-SPEED) software packets,” 2014, https://sites.google.com/site/hispeedpackets/Home/antipodallysymmetricpointset/ .
  39. J. P. Berenger, “Three-dimensional perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 127, 363–379 (1996). [CrossRef]
  40. E. K. Yen and R. G. Johnston, “The ineffectiveness of the correlation coefficient for image comparisons,” research paper (Los Alamos National Laboratory, Los Alamos, New Mexico, 1996).
  41. K. S. Yee, “Numerical solution of initial boundary value problems involving Maxwells equations in isotropic media,” IEEE Trans. Antennas Propag. 14, 302–307 (1966). [CrossRef]
  42. B. J. Davis, P. S. Carney, and R. Bhargava, “Theory of midinfrared absorption microspectroscopy: I. Homogeneous samples,” Anal. Chem. 82, 3474–3486 (2010). [CrossRef]
  43. SCATTPORT, “Light scattering Software,” 2014, http://www.scattport.org/index.php/light-scattering-software/ .

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited