OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1620–1626

Majorization and measures of classical polarization in three dimensions

Omar Gamel and Daniel F. V. James  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1620-1626 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001620


View Full Text Article

Enhanced HTML    Acrobat PDF (1844 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

There has been much discussion in the literature about rival measures of classical polarization in three dimensions. We gather and compare the various proposed measures of polarization, creating a geometric representation of the polarization state space in the process. We use majorization, previously used in quantum information, as a criterion to establish a partial ordering on the polarization state space. Using this criterion and other considerations, the most useful polarization measure in three dimensions is found to be one dependent on the Bloch vector decomposition of the polarization matrix.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization
(270.5585) Quantum optics : Quantum information and processing

ToC Category:
Physical Optics

History
Original Manuscript: March 12, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: May 29, 2014
Published: June 26, 2014

Citation
Omar Gamel and Daniel F. V. James, "Majorization and measures of classical polarization in three dimensions," J. Opt. Soc. Am. A 31, 1620-1626 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1620


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. G. Stokes, “On the composition and resolution of streams of polarized light from different sources,” Trans. Cambridge Philos. Soc. 9, 399–416 (1852).
  2. H. Poincaré, “Leçons sur la théorie mathématique de la lumière,” G. Carré. Paris 4, 408 (1889).
  3. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley-Interscience, 1998).
  4. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge, 2007).
  5. A. Al-Qasimi, O. Korotkova, D. James, and E. Wolf, “Definitions of the degree of polarization of a light beam,” Opt. Lett. 32, 1015–1016 (2007). [CrossRef]
  6. M. Nielsen and I. Chuang, Quantum Computation and Quantum Information (Cambridge, 2000).
  7. T. Carozzi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000). [CrossRef]
  8. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  9. X. F. Qian and J. H. Eberly, “Entanglement and classical polarization states,” Opt. Lett. 36, 4110–4112 (2011). [CrossRef]
  10. R. Barakat and C. Brosseau, “von Neumann entropy of n interacting pencils of radiation,” J. Opt. Soc. Am. A 10, 529–532 (1993). [CrossRef]
  11. J. J. Gil, “Polarimetric characterization of light and media,” Eur. Phys. J. Appl. Phys. 40, 1–47 (2007). [CrossRef]
  12. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
  13. M. R. Dennis, “A three-dimensional degree of polarization based on Rayleigh scattering,” J. Opt. Soc. Am. A 24, 2065–2069 (2007). [CrossRef]
  14. R. Barakat, “N-fold polarization measures and associated thermodynamic entropy of N partially coherent pencils of radiation,” J. Mod. Opt. 30, 1171–1182 (1983).
  15. O. Gamel and D. F. V. James, “Measures of quantum state purity and classical degree of polarization,” Phys. Rev. A 86, 033830 (2012). [CrossRef]
  16. M. A. Nielsen, “Conditions for a class of entanglement transformations,” Phys. Rev. Lett. 83, 436–439 (1999). [CrossRef]
  17. H.-K. Lo and S. Popescu, “Concentrating entanglement by local actions—beyond mean values,” Phys. Rev. A 63, 022301 (2001). [CrossRef]
  18. G. Milione, H. I. Sztul, D. A. Nolan, and R. R. Alfano, “Higher-order Poincaré sphere, Stokes parameters, and the angular momentum of light,” Phys. Rev. Lett. 107, 053601 (2011). [CrossRef]
  19. A. Luis, “Polarization distribution and degree of polarization for three-dimensional quantum light fields,” Phys. Rev. A 71, 063815 (2005). [CrossRef]
  20. T. Setälä, K. Lindfors, and A. T. Friberg, “Degree of polarization in 3D optical fields generated from a partially polarized plane wave,” Opt. Lett. 34, 3394–3396 (2009). [CrossRef]
  21. T. Voipio, T. Setälä, A. Shevchenko, and A. T. Friberg, “Polarization dynamics and polarization time of random three-dimensional electromagnetic fields,” Phys. Rev. A 82, 063807 (2010). [CrossRef]
  22. C. J. R. Sheppard, “Geometric representation for partial polarization in three dimensions,” Opt. Lett. 37, 2772–2774 (2012). [CrossRef]
  23. J. J. Gil and I. San José, “3D polarimetric purity,” Opt. Commun. 283, 4430–4434 (2010). [CrossRef]
  24. X. Li, T. Lan, C. H. Tien, and M. Gu, “Three-dimensional orientation-unlimited polarization encryption by a single optically configured vectorial beam,” Nat. Commun. 3, 998 (2012).
  25. M. Gell-Mann and Y. Ne’eman, The Eightfold Way (Benjamin, 1964).
  26. F. Bloch, “Nuclear induction,” Phys. Rev. 70, 460–474 (1946). [CrossRef]
  27. G. Kimura, “The Bloch vector for N-level systems,” Phys. Lett. A 314, 339–349 (2003). [CrossRef]
  28. E. Schmidt, “Zur Theorie der linearen und nichtlinearen Integralgleichungen. III. Teil,” Mathematische Annalen 65, 370–399 (1908). [CrossRef]
  29. C. E. Shannon, “A mathematical theory of communication,” Bell Syst. Tech. J. 27, 379–423, 623–656 (1948). [CrossRef]
  30. R. Bhatia, Matrix Analysis, Graduate Texts in Mathematics (Springer, 1997).
  31. A. W. Marshall, I. Olkin, and B. C. Arnold, “Schur-convex functions,” in Inequalities: Theory of Majorization and Its Applications, Springer Series in Statistics (Springer, 2011), pp. 79–154.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited