OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1627–1635

Partial polarization of optical beams and near fields probed with a nanoscatterer

Lasse-Petteri Leppänen, Ari T. Friberg, and Tero Setälä  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1627-1635 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001627


View Full Text Article

Enhanced HTML    Acrobat PDF (788 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider theoretically the detection of the spectral polarization characteristics of random, partially polarized optical beams and near fields by probing them with a dipolar nanoparticle. We show that measuring the polarization state of the scattered far field with a conventional waveplate–polarizer setup, possibly in several directions, results in the full 3×3 polarization matrix at the probe site. This allows us to deduce the distributions of the degree of polarization of the field and the Stokes parameters of the polarized part of the field with a resolution limited by the probe size. Regarding random near fields we show that, in analogy with a known result on beam fields, a degree of polarization of three-component light fields put forward in recent literature can in some cases be interpreted as a ratio of the intensity in the polarized part of the light to that of the total field. We demonstrate the technique by considering the probing of a Gaussian–Schell model beam and a thermally excited near field. The method extends the current scanning-probe techniques to the detection of partial polarization of random light fields and can find applications in nanophotonics and polarization optics.

© 2014 Optical Society of America

OCIS Codes
(030.1640) Coherence and statistical optics : Coherence
(260.5430) Physical optics : Polarization
(180.4243) Microscopy : Near-field microscopy
(290.5855) Scattering : Scattering, polarization

ToC Category:
Physical Optics

History
Original Manuscript: March 4, 2014
Revised Manuscript: May 28, 2014
Manuscript Accepted: May 28, 2014
Published: June 27, 2014

Citation
Lasse-Petteri Leppänen, Ari T. Friberg, and Tero Setälä, "Partial polarization of optical beams and near fields probed with a nanoscatterer," J. Opt. Soc. Am. A 31, 1627-1635 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1627


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. L. Novotny and B. Hecht, Principles of Nano-Optics, 2nd ed. (Cambridge University, 2012).
  2. M. Ohtsu, ed., Near-Field Nano/Atom Optics and Technology (Springer, 1998).
  3. D. Courjon, Near-Field Microscopy and Near-Field Optics (Imperial College, 2003).
  4. T. Kalkbrenner, M. Ramstein, J. Mlynek, and V. Sandoghdar, “A single gold particle as a probe for apertureless scanning near-field optical microscopy,” J. Microsc. 202, 72–76 (2001). [CrossRef]
  5. J.-J. Greffet and R. Carminati, “Image formation in near-field optics,” Prog. Surf. Sci. 56, 133–237 (1997). [CrossRef]
  6. A. Madrazo, R. Carminati, M. Nieto-Vesperinas, and J.-J. Greffet, “Polarization effects in the optical interaction between a nanoparticle and a corrigated surface: implications for apertureless near-field microscopy,” J. Opt. Soc. Am. A 15, 109–119 (1998). [CrossRef]
  7. L. Aigouy, A. Lahrech, S. Grésillon, H. Cory, A. C. Boccara, and J. C. Rivoal, “Polarization effects in apertureless scanning near-field optical microscopy: an experimental study,” Opt. Lett. 24, 187–189 (1999). [CrossRef]
  8. K. Joulain, R. Carminati, J.-P. Mulet, and J.-J. Greffet, “Definition and measurement of the local density of electromagnetic states close to an interface,” Phys. Rev. B 68, 245405 (2003). [CrossRef]
  9. Y. De Wilde, F. Formanek, R. Carminati, B. Gralak, P.-A. Lemoine, K. Joulain, J.-P. Mulet, Y. Chen, and J.-J. Greffet, “Thermal radiation scanning tunneling microscopy,” Nature 444, 740–743 (2006). [CrossRef]
  10. S. Grésillon, L. Aigouy, A. C. Boccara, J. C. Rivoal, X. Quelin, C. Desmarest, P. Gadenne, V. A. Shubin, A. K. Sarychev, and V. M. Shalaev, “Experimental observation of localized optical excitations in random metal-dielectric films,” Phys. Rev. Lett. 82, 4520–4523 (1999). [CrossRef]
  11. V. Emiliani, F. Intonti, M. Cazayous, D. S. Wiersma, M. Colocci, F. Aliev, and A. Lagendijk, “Near-field short range correlation in optical waves transmitted through random media,” Phys. Rev. Lett. 90, 250801 (2003). [CrossRef]
  12. A. Apostol and A. Dogariu, “Spatial correlations in the near field of random media,” Phys. Rev. Lett. 91, 093901 (2003). [CrossRef]
  13. J. Laverdant, S. Buil, B. Bérini, and X. Quélin, “Polarization dependent near-field speckle of random gold films,” Phys. Rev. B 77, 165406 (2008). [CrossRef]
  14. R. Dändliker, P. Tortora, L. Vaccaro, and A. Nesci, “Measuring three-dimensional polarization with scanning optical probes,” J. Opt. Pure Appl. Opt. 6, S18–S23 (2004).
  15. L. Novotny, M. R. Beversluis, K. S. Youngworth, and T. G. Brown, “Longitudinal field modes probed by single molecules,” Phys. Rev. Lett. 86, 5251–5254 (2001). [CrossRef]
  16. K. Lindfors, A. Priimagi, T. Setälä, A. Shevchenko, A. T. Friberg, and M. Kaivola, “Local polarization of tightly focused unpolarized light,” Nat. Photonics 1, 228–231 (2007). [CrossRef]
  17. T. Setälä, A. Shevchenko, M. Kaivola, and A. T. Friberg, “Degree of polarization for optical near fields,” Phys. Rev. E 66, 016615 (2002). [CrossRef]
  18. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley-Interscience, 1983).
  19. R. Carminati, J.-J. Greffet, C. Henkel, and J. M. Vigoureux, “Radiative and non-radiative decay of a single molecule close to a metallic nanoparticle,” Opt. Commun. 261, 368–375 (2006). [CrossRef]
  20. P. C. Chaumet, A. Rahmani, F. de Fornel, and J.-P. Dufour, “Evanescent light scattering: the validity of the dipole approximation,” Phys. Rev. B 58, 2310–2315 (1998). [CrossRef]
  21. I. U. Vakarelski and K. Higashitani, “Single-nanoparticle-terminated tips for scanning probe microscopy,” Langmuir 22, 2931–2934 (2006). [CrossRef]
  22. T. Hakkarainen, T. Setälä, and A. T. Friberg, “Near-field imaging of interacting nano objects with metal and metamaterial superlenses,” New J. Phys. 14, 043019 (2012). [CrossRef]
  23. C.-T. Tai, Dyadic Green’s Functions in Electromagnetic Theory (Intext, 1971).
  24. T. Setälä, K. Blomstedt, M. Kaivola, and A. T. Friberg, “Universality of electromagnetic-field correlations within homogeneous and isotropic sources,” Phys. Rev. E 67, 026613 (2003). [CrossRef]
  25. L. Mandel and E. Wolf, Optical Coherence and Quantum Optics (Cambridge University, 1995).
  26. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics, 2nd ed. (Wiley, 2007).
  27. N. Feth, “Degree of polarization in random electromagnetic fields,” M.Sc. thesis (Kungliga tekniska högskolan, 2004).
  28. M. Alonso and E. J. Finn, Fundamental University Physics: Fields and Waves, 2nd ed. (Addison-Wesley, 1983).
  29. C. Brosseau, Fundamentals of Polarized Light: A Statistical Optics Approach (Wiley, 1998).
  30. T. Voipio, T. Setälä, and A. T. Friberg, “Partial polarization theory of pulsed optical beams,” J. Opt. Soc. Am. A 30, 71–81 (2013). [CrossRef]
  31. T. Carozzi, R. Karlsson, and J. Bergman, “Parameters characterizing electromagnetic wave polarization,” Phys. Rev. E 61, 2024–2028 (2000). [CrossRef]
  32. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge, 1999).
  33. J. Ellis, A. Dogariu, S. Ponomarenko, and E. Wolf, “Degree of polarization of statistically stationary electromagnetic fields,” Opt. Commun. 248, 333–337 (2005). [CrossRef]
  34. T. Saastamoinen and J. Tervo, “Geometric approach to the degree of polarization for arbitrary fields,” J. Mod. Opt. 51, 2039–2045 (2004). [CrossRef]
  35. E. Wolf, Introduction to the Theory of Coherence and Polarization of Light (Cambridge University, 2007).
  36. R. Carminati and J.-J. Greffet, “Near-field effects in spatial coherence of thermal sources,” Phys. Rev. Lett. 82, 1660–1663 (1999). [CrossRef]
  37. A. V. Shchegrov, K. Joulain, R. Carminati, and J.-J. Greffet, “Near-field spectral effects due to electromagnetic surface excitations,” Phys. Rev. Lett. 85, 1548–1551 (2000). [CrossRef]
  38. T. Setälä, M. Kaivola, and A. T. Friberg, “Degree of polarization in near fields of thermal sources: effects of surface waves,” Phys. Rev. Lett. 88, 123902 (2002). [CrossRef]
  39. J.-J. Greffet and C. Henkel, “Coherent thermal radiation,” Contemp. Phys. 48, 183–194 (2007). [CrossRef]
  40. J. M. Auñón and M. Nieto-Vesperinas, “On two definitions of the three-dimensional degree of polarization in the near field of statistically homogeneous partially coherent sources,” Opt. Lett. 38, 58–60 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited