OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 7 — Jul. 1, 2014
  • pp: 1636–1644

Silhouette estimation

Richard G. Paxman, David A. Carrara, Paul D. Walker, and Nicolas Davidenko  »View Author Affiliations


JOSA A, Vol. 31, Issue 7, pp. 1636-1644 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001636


View Full Text Article

Enhanced HTML    Acrobat PDF (1319 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silhouettes arise in a variety of imaging scenarios. Pristine silhouettes are often degraded via blurring, detector sampling, and detector noise. We present a maximum a posteriori estimator for the restoration of parameterized facial silhouettes. Extreme dealiasing and dramatic superresolution, well beyond the diffraction limit, are demonstrated through the use of strong prior knowledge.

© 2014 Optical Society of America

OCIS Codes
(100.1830) Image processing : Deconvolution
(100.3010) Image processing : Image reconstruction techniques
(100.3008) Image processing : Image recognition, algorithms and filters

ToC Category:
Image Processing

History
Original Manuscript: February 13, 2014
Revised Manuscript: April 8, 2014
Manuscript Accepted: April 9, 2014
Published: June 30, 2014

Citation
Richard G. Paxman, David A. Carrara, Paul D. Walker, and Nicolas Davidenko, "Silhouette estimation," J. Opt. Soc. Am. A 31, 1636-1644 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-7-1636


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Davidenko, “Silhouetted face profiles: a new methodology for face perception research,” J. Vis. 7(4):6, 1–17 (2007). [CrossRef]
  2. A. Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Trans. Pattern Anal. Mach. Intell 16, 150–162 (1994). [CrossRef]
  3. E. Boyer and J. S. Franco, “A hybrid approach for computing visual hulls of complex objects,” Comput. Vis. Pattern Recogn. 1, 695–701 (2003).
  4. B. DeCann and A. Ross, “Gait curves for human recognition, backpack detection, and silhouette correction in a nighttime environment,” Proc. SPIE 7667, 76670Q (2010). [CrossRef]
  5. J. R. Fienup, “Phase retrieval algorithms: a comparison,” Appl. Opt. 21, 2758–2769 (1982). [CrossRef]
  6. C. L. Matson, “Fourier spectrum extrapolation and enhancement using support constraints,” IEEE Trans. Signal Process 42, 156–163 (1994). [CrossRef]
  7. R. G. Paxman, P. D. Walker, and N. Davidenko, “Silhouette restoration,” in Computational Optical Sensing and Imaging, OSA Technical Digest (Optical Society of America, 2013), paper CM2C.4.
  8. R. G. Paxman, J. H. Seldin, J. R. Fienup, and J. C. Marron, “Use of an opacity constraint in three-dimensional imaging,” Proc. SPIE 2241–14, 116–126 (1994). [CrossRef]
  9. R. G. Paxman, J. R. Fienup, M. J. Reiley, and B. J. Thelen, “Phase retrieval with an opacity constraint in laser imaging (PROCLAIM),” in Signal Recovery and Synthesis V, Technical Digest Series, 11 (Optical Society of America, 1998), pp. 34–36.
  10. J. R. Fienup, R. G. Paxman, M. F. Reiley, and B. J. Thelen, “3-D imaging correlography and coherent image reconstruction,” Proc. SPIE 3815–07, 60–69 (1999). [CrossRef]
  11. R. G. Paxman, “Superresolution with an opacity constraint,” in Signal Recovery and Synthesis III, Technical Digest Series, Vol. 15 (Optical Society of America, 1989).
  12. P. J. Phillips, H. Moon, S. A. Rizvi, and P. J. Rauss, “The FERET evaluation methodology for face-recognition algorithms,” IEEE Trans. Pattern Anal. Mach. Intell. 22, 1090–1104 (2000). [CrossRef]
  13. P. J. Phillips, H. Wechsler, J. Huang, and P. J. Rauss, “The FERET database and evaluation procedure for face-recognition algorithms,” Image Vis. Comput. 16, 295–306 (1998).
  14. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley, 2004).
  15. A. Berk, L. S. Bernstein, and D. C. Robertson, “MODTRAN: a moderate resolution model for LOWTRAN7,” (Air Force Geophysics Laboratory, 1989).
  16. R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, “A limited memory algorithm for bound constrained optimization,” SIAM J. Sci. Comput. 16, 1190–1208 (1995). [CrossRef]
  17. R. C. Veltkamp, “Shape matching: similarity measures and algorithms,” in Proceedings of International Conference on Shape Modeling and Applications (IEEE, 2001), pp. 188–197.
  18. F. O’Sullivan and G. Wahba, “A cross validated Bayesian retrieval algorithm for nonlinear remote sensing experiments,” J. Comput. Phys. 59, 441–455 (1985). [CrossRef]
  19. J. L. C. Sanz and T. S. Huang, “Discrete and continuous band-limited signal extrapolation,” IEEE Trans. Acoust. Speech Signal Process 31, 1276–1285 (1983). [CrossRef]
  20. M. E. Davison, “The ill-conditioned nature of the limited angle tomography problem,” SIAM J. Appl. Math. 43, 428–448 (1983). [CrossRef]
  21. L. Piegl and W. Tiller, The NURBS Book (Springer-Verlag, 1997).
  22. T. W. Sederberg, D. L. Cardon, G. T. Finnigan, N. S. North, J. Zheng, and T. Lyche, “T-spline simplification and local refinement,” ACM Trans. Graph 23, 276–283 (2004).
  23. T. J. A. Sethian, Level Set Methods (Cambridge University, 1996).
  24. S. Osher and R. Fedkiw, Level Set Methods and Dynamic Implicit Surfaces (Springer-Verlag, 2002).
  25. K. Krishnamurthy, W. U. Bajwa, and R. Willet, “Level set estimation from projection measurements: performance guarantees and fast computation,” SIAM J. Imaging Sci. 6, 2047–2074 4(2013).
  26. G. M. Schuster, G. Melnikov, and A. K. Katsaggelos, “Operationally optimal vertex-based shape coding,” IEEE Signal Process. Mag.. 15(6), 91–108 (1998). [CrossRef]
  27. A. K. Katsaggelos, L. P. Kondi, F. W. Meier, J. Ostermann, and G. M. Schuster, “MPEG-4 and rate-distortion-based shape-coding techniques,” Proc. IEEE 86, 1126–1154 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited