OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1710–1715

Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles

Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1710-1715 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001710


View Full Text Article

Enhanced HTML    Acrobat PDF (707 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The intrinsic optical torque of a focused cylindrical vector beam on a Rayleigh absorptive spherical particle is calculated via the corrected dipole approximation. Numerical results show that, for the radially polarized input field, the torque is distributed in the focal plane strictly along the azimuthal direction anywhere except at the focus. This shows a completely different property from what is observed in the focusing of a circularly polarized beam, where a strong axial torque component arises. For other cylindrically polarized input fields, the torque tends to align itself along the radial direction, as the polarization angle (the angle between the electric vector and the radial direction) changes from 0° to 90°. When limited to considering the torque at the equilibrium position, we find that only for those input fields with polarization angles larger than 50°, the particle experiences a nonzero torque at its equilibrium position. This is verified by showing quantitatively the effects of the polarization angle on the magnitude and orientation of the torque at the equilibrium position.

© 2014 Optical Society of America

OCIS Codes
(140.7010) Lasers and laser optics : Laser trapping
(260.2110) Physical optics : Electromagnetic optics
(290.0290) Scattering : Scattering

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: April 30, 2014
Revised Manuscript: June 3, 2014
Manuscript Accepted: June 6, 2014
Published: July 3, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Manman Li, Shaohui Yan, Baoli Yao, Ming Lei, Yanlong Yang, Junwei Min, and Dan Dan, "Intrinsic optical torque of cylindrical vector beams on Rayleigh absorptive spherical particles," J. Opt. Soc. Am. A 31, 1710-1715 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1710


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Ashkin, J. Dziedzic, J. Bjorkholm, and S. Chu, “Observation of a single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986). [CrossRef]
  2. K. Svoboda and S. M. Block, “Optical trapping of metallic Rayleigh particles,” Opt. Lett. 19, 930–932 (1994). [CrossRef]
  3. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529–541 (1996). [CrossRef]
  4. T. X. Hoang, X. Chen, and C. J. Sheppard, “Multipole theory for tight focusing of polarized light, including radially polarized and other special cases,” J. Opt. Soc. Am. A 29, 32–43 (2012). [CrossRef]
  5. A. A. Ambardekar and Y.-Q. Li, “Optical levitation and manipulation of stuck particles with pulsed optical tweezers,” Opt. Lett. 30, 1797–1799 (2005). [CrossRef]
  6. L. Oroszi, P. Galajda, H. Kirei, S. Bottka, and P. Ormos, “Direct measurement of torque in an optical trap and its application to double-strand DNA,” Phys. Rev. Lett. 97, 058301 (2006). [CrossRef]
  7. Y. Tadir, W. Wright, O. Vafa, T. Ord, R. Asch, and M. Berns, “Micromanipulation of sperm by a laser generated optical trap,” Fertil. Steril. 52, 870–873 (1989).
  8. N. Ponelies, J. Scheef, A. Harim, G. Leitz, and K. Greulich, “Laser micromanipulators for biotechnology and genome research,” J. Biotechnol. 35, 109–120 (1994). [CrossRef]
  9. K. Ren, G. Gréhan, and G. Gouesbet, “Prediction of reverse radiation pressure by generalized Lorenz–Mie theory,” Appl. Opt. 35, 2702–2710 (1996). [CrossRef]
  10. T. Nieminen, H. Rubinsztein-Dunlop, N. Heckenberg, and A. I. Bishop, “Numerical modelling of optical trapping,” Comput. Phys. Commun. 142, 468–471 (2001). [CrossRef]
  11. F. Xu, X. Cai, and G. Gréhan, “Theoretical prediction of radiation pressure force exerted on a spheroid by an arbitrarily shaped beam,” Phys. Rev. E 75, 026613 (2007). [CrossRef]
  12. S. H. Simpson and S. Hanna, “Optical trapping of spheroidal particles in Gaussian beams,” J. Opt. Soc. Am. A 24, 430–443 (2007). [CrossRef]
  13. T. A. Nieminen, V. L. Y. Loke, A. B. Stilgoe, G. Knöner, A. M. Brańczyk, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical tweezers computational toolbox,” J. Opt. A 9, S196–S203 (2007).
  14. S. H. Simpson and S. Hanna, “Computational study of the optical trapping of ellipsoidal particles,” Phys. Rev. A 84, 053808 (2011). [CrossRef]
  15. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569–582 (1992). [CrossRef]
  16. C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms: Introduction to QED (Wiley, 1989).
  17. M. Padgett, J. Courtial, and L. Allen, “Light’s orbital angular momentum,” Phys. Today 57, 35–40 (2004). [CrossRef]
  18. B. T. Draine, “The discrete-dipole approximation and its application to interstellar graphite grains,” Astrophys. J. 333, 848–872 (1988). [CrossRef]
  19. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1998).
  20. J. P. Gordon, “Radiation forces and momenta in dielectric media,” Phys. Rev. A 8, 14–21 (1973). [CrossRef]
  21. P. Chaumet and M. Nieto-Vesperinas, “Time-averaged total force on a dipolar sphere in an electromagnetic field,” Opt. Lett. 25, 1065–1067 (2000). [CrossRef]
  22. P. C. Chaumet and A. Rahmani, “Electromagnetic force and torque on magnetic and negative-index scatterers,” Opt. Express 17, 2224–2234 (2009). [CrossRef]
  23. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Extraordinary momentum and spin in evanescent waves,” arXiv:1308.0547 (2014).
  24. K. Y. Bliokh, A. Y. Bekshaev, and F. Nori, “Dual electromagnetism: helicity, spin, momentum and angular momentum,” New J. Phys. 15, 033026 (2013). [CrossRef]
  25. E. Wolf, “Electromagnetic diffraction in optical systems. I. An integral representation of the image field,” Proc. R. Soc. London, Ser. A 253, 349–357 (1959). [CrossRef]
  26. B. Richards and E. Wolf, “Electromagnetic diffraction in optical systems. II. Structure of the image field in an aplanatic system,” Proc. R. Soc. London, Ser. A. 253, 358–379 (1959). [CrossRef]
  27. S. Yan and B. Yao, “Radiation forces of a highly focused radially polarized beam on spherical particles,” Phys. Rev. A 76, 053836 (2007). [CrossRef]
  28. K. Youngworth and T. Brown, “Focusing of high numerical aperture cylindrical-vector beams,” Opt. Express 7, 77–87 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited