OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1730–1737

Diffraction by nanocrystals II

Joe P. J. Chen and Rick P. Millane  »View Author Affiliations

JOSA A, Vol. 31, Issue 8, pp. 1730-1737 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (893 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Nanocrystals with more than one molecule in the unit cell will generally crystallize with incomplete unit cells on the crystal surface. Previous results show that the ensemble-averaged diffraction by such crystals consists of a usual Bragg component and two other Bragg-like components due to the incomplete unit cells. Using an intrinsic flexibility in the definition of the incomplete-unit-cell part of a crystal, the problem is formulated such that the magnitude of the Bragg-like components is minimized, which leads to a simpler and more useful interpretation of the diffraction. Simulations show the nature of the relative magnitudes of the diffraction components in different regions of reciprocal space and the effect of crystal faceting.

© 2014 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(050.1960) Diffraction and gratings : Diffraction theory
(110.7440) Imaging systems : X-ray imaging

ToC Category:
Diffraction and Gratings

Original Manuscript: April 18, 2014
Revised Manuscript: June 2, 2014
Manuscript Accepted: June 2, 2014
Published: July 15, 2014

Joe P. J. Chen and Rick P. Millane, "Diffraction by nanocrystals II," J. Opt. Soc. Am. A 31, 1730-1737 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Neutze, R. Wouts, D. van der Spoel, E. Weckert, and J. Hajdu, “Potential for biomolecular imaging with femtosecond x-ray pulses,” Nature 406, 752–757 (2000). [CrossRef]
  2. H. N. Chapman, A. Barty, M. J. Bogan, S. Boutet, M. Frank, S. P. Hau-Riege, S. Marchesini, B. W. Woods, S. Bajt, H. Benner, R. A. London, E. Plonjes, M. Kuhlmann, R. Treusch, S. Dusterer, T. Tschentscher, J. R. Schneider, E. Spiller, T. Moller, C. Bostedt, M. Hoener, D. A. Shapiro, K. O. Hodgson, D. Van der Spoel, F. Burmeister, M. Bergh, C. Caleman, G. Huldt, M. M. Seibert, F. R. N. C. Maia, R. W. Lee, A. Szoke, N. Timneanu, and J. Hajdu, “Femtosecond diffractive imaging with a soft-x-ray free-electron laser,” Nat. Phys. 2, 839–843 (2006). [CrossRef]
  3. H. N. Chapman, P. Fromme, A. Barty, T. A. White, R. A. Kirian, A. Aquila, M. S. Hunter, J. Schulz, D. P. DePonte, U. Weierstall, B. R. Doak, F. R. N. C. Maia, A. V. Martin, I. Schlichting, L. Lomb, N. Coppola, R. L. Shoeman, S. W. Epp, R. Hartmann, D. Rolles, A. Rudenko, L. Foucar, N. Kimmel, G. Weidenspointner, P. Holl, M. N. Liang, M. Barthelmess, C. Caleman, S. Boutet, M. J. Bogan, J. Krzywinski, C. Bostedt, S. Bajt, L. Gumprecht, B. Rudek, B. Erk, C. Schmidt, A. Homke, C. Reich, D. Pietschner, L. Struder, G. Hauser, H. Gorke, J. Ullrich, S. Herrmann, G. Schaller, F. Schopper, H. Soltau, K. U. Kuhnel, M. Messerschmidt, J. D. Bozek, S. P. Hau-Riege, M. Frank, C. Y. Hampton, R. G. Sierra, D. Starodub, G. J. Williams, J. Hajdu, N. Timneanu, M. M. Seibert, J. Andreasson, A. Rocker, O. Jonsson, M. Svenda, S. Stern, K. Nass, R. Andritschke, C. D. Schroter, F. Krasniqi, M. Bott, K. E. Schmidt, X. Y. Wang, I. Grotjohann, J. M. Holton, T. R. M. Barends, R. Neutze, S. Marchesini, R. Fromme, S. Schorb, D. Rupp, M. Adolph, T. Gorkhover, I. Andersson, H. Hirsemann, G. Potdevin, H. Graafsma, B. Nilsson, and J. C. H. Spence, “Femtosecond x-ray protein nanocrystallography,” Nature 470, 73–77 (2011). [CrossRef]
  4. J. C. H. Spence, U. Weierstall, and H. N. Chapman, “X-ray lasers for structural and dynamic biology,” Rep. Prog. Phys. 75, 102601 (2012). [CrossRef]
  5. R. A. Kirian, X. Y. Wang, U. Weierstall, K. E. Schmidt, J. C. H. Spence, M. Hunter, P. Fromme, T. A. White, H. N. Chapman, and J. M. Holton, “Femtosecond protein nanocrystallography—data analysis methods,” Opt. Express 18, 5713–5723 (2010). [CrossRef]
  6. T. A. White, A. Barty, F. Stellato, J. M. Holton, R. A. Kirian, N. A. Zatsepin, and H. N. Chapman, “Crystallographic data processing for free-electron laser sources,” Acta Crystallogr. Sect. D 69, 1231–1240 (2013). [CrossRef]
  7. J. Drenth, Principles of Protein X-Ray Crystallography (Springer-Verlag, 1994).
  8. S. Boutet, L. Lomb, G. J. Williams, T. R. M. Barends, A. Aquila, R. B. Doak, U. Weierstall, D. P. DePonte, J. Steinbrener, R. L. Shoeman, M. Messerschmidt, A. Barty, T. A. White, S. Kassemeyer, R. A. Kirian, M. M. Seibert, P. A. Montanez, C. Kenney, R. Herbst, P. Hart, J. Pines, G. Haller, S. M. Gruner, H. T. Philipp, M. W. Tate, M. Hromalik, L. J. Koerner, N. van Bakel, J. Morse, W. Ghonsalves, D. Arnlund, M. J. Bogan, C. Caleman, R. Fromme, C. Y. Hampton, M. S. Hunter, L. C. Johansson, G. Katona, C. Kupitz, M. N. Liang, A. V. Martin, K. Nass, L. Redecke, F. Stellato, N. Timneanu, D. J. Wang, N. A. Zatsepin, D. Schafer, J. Defever, R. Neutze, P. Fromme, J. C. H. Spence, and H. N. Chapman, “High-resolution protein structure determination by serial femtosecond crystallography,” Science 337, 362–364 (2012). [CrossRef]
  9. D. Sayre, “Some implications of a theorem due to Shannon,” Acta Crystallogr. 5, 843 (1952). [CrossRef]
  10. R. P. Millane, “Phase retrieval in crystallography and optics,” J. Opt. Soc. Am. A 7, 394–411 (1990). [CrossRef]
  11. J. Miao and D. Sayre, “On possible extensions of X-ray crystallography through diffraction-pattern oversampling,” Acta Crystallogr. Sect. A 56, 596–605 (2000). [CrossRef]
  12. V. Elser, “Phase retrieval by iterated projections,” J. Opt. Soc. Am. A 20, 40–55 (2003). [CrossRef]
  13. S. Marchesini, “A unified evaluation of iterative projection algorithms for phase retrieval,” Rev. Sci. Instrum. 78, 011301 (2007). [CrossRef]
  14. J. C. H. Spence, R. A. Kirian, X. Y. Wang, U. Weierstall, K. E. Schmidt, T. A. White, A. Barty, H. N. Chapman, S. Marchesini, and J. Holton, “Phasing of coherent femtosecond X-ray diffraction from size-varying nanocrystals,” Opt. Express 19, 2866–2873 (2011). [CrossRef]
  15. V. Elser, “Direct phasing of nanocrystal diffraction,” Acta Crystallogr. Sect. A 69, 559–569 (2013). [CrossRef]
  16. J. P. J. Chen, J. C. H. Spence, and R. P. Millane, “Direct phasing in femtosecond nanocrystallography I. Diffraction characteristics,” Acta Crystallogr. Sect. A 70, 143–153 (2014). [CrossRef]
  17. J. P. J. Chen, J. C. H. Spence, and R. P. Millane, “Direct phasing in femtosecond nanocrystallography II. Phase retrieval,” Acta Crystallogr. Sect. A 70, 154–161 (2014). [CrossRef]
  18. R. P. Millane and J. P. J. Chen, “Aspects of direct phasing in femtosecond nanocrystallography,” Phil. Trans. R. Soc. B 369, 20130498 (2014). [CrossRef]
  19. J. P. J. Chen and R. P. Millane, “Diffraction by nanocrystals,” J. Opt. Soc. Am. A 30, 2627–2634 (2013). [CrossRef]
  20. H. Liu, N. A. Zatsepin, and J. C. H. Spence, “Ab-initio phasing using nanocrystal shape transforms with incomplete unit cells,” IUCrJ 1, 19–27 (2014).
  21. R. A. Kirian, R. J. Bean, K. R. Beyerlein, O. M. Yefanov, T. A. White, A. Barty, and H. N. Chapman, “Phasing coherently illuminated nanocrystals bounded by partial unit cells,” Phil. Trans. R. Soc. B 369, 20130331 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited