OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1747–1753

Holographic particle sizing and locating by using Hilbert–Huang transform

Danjie Cai, Xiaojuan Zhao, Yuting Cen, Chujun Zheng, and Peng Han  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1747-1753 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001747


View Full Text Article

Enhanced HTML    Acrobat PDF (800 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

By using the Hilbert–Huang transform, a novel method is proposed to perform the task of particle sizing and axial locating directly from in-line digital holograms rather than reconstructing the optical field. The intensity distribution of the particle hologram is decomposed into intrinsic mode functions (IMFs) by the empirical mode decomposition. From the Hilbert spectrum of these IMFs, the axial location of the particle can be calculated by fitting the spectrum to a straight line, and the particle size can be derived from the singularities of the spectrum. Our method does not need to predefine any basis function; thus the whole process is fast and efficient. The validity and accuracy of the method are demonstrated by the numerical simulations and experiments. It is expected that this method can be used in on-line particle sizing and 3D tracking.

© 2014 Optical Society of America

OCIS Codes
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing
(100.2000) Image processing : Digital image processing
(090.1995) Holography : Digital holography

ToC Category:
Holography

History
Original Manuscript: March 25, 2014
Revised Manuscript: June 15, 2014
Manuscript Accepted: June 24, 2014
Published: July 16, 2014

Citation
Danjie Cai, Xiaojuan Zhao, Yuting Cen, Chujun Zheng, and Peng Han, "Holographic particle sizing and locating by using Hilbert–Huang transform," J. Opt. Soc. Am. A 31, 1747-1753 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1747


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. R. Guildenbecher, P. L. Reu, H. L. Stuaffacher, and T. Grasser, “Accurate measurement of out-of-plane particle displacement from the cross correlation of sequential digital in-line holograms,” Opt. Lett. 38, 4015–4018 (2013). [CrossRef]
  2. F. Verpillat, F. Joud, P. Desbiolles, and M. Gross, “Dark-field digital holographic microscopy for 3D-tracking of gold nanoparticles,” Opt. Express 19, 26044–26055 (2011). [CrossRef]
  3. Y. Wu, X. Wu, Z. Wang, L. Chen, and K. Cen, “Coal powder measurement by digital holography with expanded measurement area,” Appl. Opt. 50, H22–H29 (2011). [CrossRef]
  4. D. Lebrun, L. Méès, D. Fréchou, S. Coëtmellec, M. Brunel, and D. Allano, “Long time exposure digital in-line holography for 3-D particle trajectography,” Opt. Express 21, 23522–23530 (2013). [CrossRef]
  5. Y. Yang, G. Li, L. Tang, and L. Huang, “Integrated gray-level gradient method applied for the extraction of three-dimensional velocity fields of sprays in in-line digital holography,” Appl. Opt. 51, 255–267 (2012). [CrossRef]
  6. L. Miccio, P. Memmolo, F. Merola, S. Fusco, V. Embrione, A. Paciello, M. Ventre, P. A. Netti, and P. Ferraro, “Particle tracking by full-field complex wavefront subtraction in digital holography microscopy,” Lab Chip 14, 1129–1134 (2014). [CrossRef]
  7. W. Chen, C. J. Quan, and C. J. Tay, “Extended depth of focus in a particle field measurement using a single-shot digital hologram,” Appl. Phys. Lett. 95, 201103 (2009). [CrossRef]
  8. L. Tian, N. Loomis, J. A. Dominguez-Caballero, and G. Barbastathis, “Quantitative measurement of size and three-dimensional position of fast-moving bubbles in air-water mixture flows using digital holography,” Appl. Opt. 49, 1549–1554 (2010). [CrossRef]
  9. L. Denis, D. Lorenz, E. Thiébaut, C. Fourier, and D. Trede, “Inline hologram reconstruction with sparsity constraints,” Opt. Lett. 34, 3475–3477 (2009). [CrossRef]
  10. W. Yang, A. B. Kostinski, and R. A. Shaw, “Depth-of-focus reduction for digital in-line holography of particle fields,” Opt. Lett. 30, 1303–1305 (2005). [CrossRef]
  11. W. Yingchun, W. Xuecheng, Y. Jing, W. Zhihua, G. Xiang, Z. Binwu, C. Linghong, Q. Kunzan, G. Gréhan, and C. Kefa, “Wavelet-based depth-of-field extension, accurate autofocusing, and particle pairing for digital inline particle holography,” Appl. Opt. 53, 556–564 (2014). [CrossRef]
  12. M. Antkowiak, N. Callens, C. Yourassowsky, and F. Dubois, “Extended focused imaging of a micro particle field with digital holographic microscopy,” Opt. Lett. 33, 1626–1628 (2008). [CrossRef]
  13. C. P. McElhinney, B. M. Hennelly, and T. J. Naughton, “Extended focused imaging for digital holograms of macroscopic three-dimensional objects,” Appl. Opt. 47, D71–D79 (2008). [CrossRef]
  14. C. Buraga-Lefebvre, S. Coetmellec, D. Lebrun, and C. Ozkul, “Application of wavelet transform to hologram analysis: three-dimensional location of particles,” Opt. Lasers Eng. 33, 409–421 (2000). [CrossRef]
  15. Y. Yang, B. Kang, and Y. Choo, “Application of the correlation coefficient method for determination of the focal plane to digital particle holography,” Appl. Opt. 47, 817–824 (2008). [CrossRef]
  16. M. Liebling and M. Unser, “Autofocus for digital Fresnel holograms by use of a Fresnelet-sparsity criterion,” J. Opt. Soc. Am. A 21, 2424–2430 (2004). [CrossRef]
  17. P. Langehanenberg, B. Kemper, D. Dirksen, and G. von Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176–D182 (2008). [CrossRef]
  18. D. Kapfenberger, A. Sonn-Segev, and Y. Roichman, “Accurate holographic imaging of colloidal particle pairs by Rayleigh-Sommerfeld reconstruction,” Opt. Express 21, 12228–12237 (2013). [CrossRef]
  19. G. A. Tyler and B. J. Thompson, “Fraunhofer holography applied to particle size analysis a reassessment,” Opt. Acta 23, 685–700 (1976). [CrossRef]
  20. K. Nishihara, S. Hatano, and K. Nagayama, “New method of obtaining particle diameter by the fast Fourier transform pattern of the in-line hologram,” Opt. Eng. 36, 2429–2439 (1997). [CrossRef]
  21. L. Denis, C. Fournier, T. Fournel, C. Ducottet, and D. Jeulin, “Direct extraction of the mean particle size from a digital hologram,” Appl. Opt. 45, 944–952 (2006). [CrossRef]
  22. L. Onural and M. T. Özgen, “Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis,” J. Opt. Soc. Am. A 9, 252–260 (1992). [CrossRef]
  23. J. Widjaja and S. Soontaranon, “All wavelet analysis of in-line particle holograms,” Opt. Lasers Eng. 47, 1325–1333 (2009). [CrossRef]
  24. N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng, N. C. Yen, C. C. Tung, and H. H. Liu, “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis,” Proc. R. Soc. Lond. A 454, 903–995 (1998). [CrossRef]
  25. N. E. Huang, “New method for nonlinear and nonstationary time series analysis: empirical mode decomposition and Hilbert spectral analysis,” Proc. SPIE 4056, 197–209 (2000). [CrossRef]
  26. N. E. Huang, M. C. Wu, S. R. Long, S. S. P. Shen, W. Qu, P. Gloersen, and K. L. Fan, “A confidence limit for empirical mode decomposition and Hilbert spectral analysis,” Proc. R. Soc. A 459, 2317–2345 (2003). [CrossRef]
  27. E. C. Titchmarsh, Introduction to the Theory of Fourier Integrals (Oxford University, 1948).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited