OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1754–1761

Coherence filtering and revivals in x-ray waveguides: a communication-modes approach

Daniele Pelliccia and David M. Paganin  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1754-1761 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001754


View Full Text Article

Enhanced HTML    Acrobat PDF (1019 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Waveguides for short-wavelength x-rays have been successfully employed for microbeam and nanobeam production and microscopy experiments. The coherence of hard x-ray sources is generally poor, and therefore the spatial coherence filtering characteristics of waveguides have been attractive for high-resolution microscopy experiments. To quantify the spatial coherence filtering properties of a waveguide, we here report a theoretical study of the propagation of a partially coherent beam in a waveguide in the paraxial approximation. By propagating the cross-spectral density function associated with the partially coherent field, we quantify in detail the evolution of the spatial coherence as the beam proceeds along the waveguide. The propagation is efficiently accomplished using the communication-modes formalism. The generality of the approach makes it suitable to study more complex phenomena such as the second-order Talbot self-imaging effect and coherence revivals in waveguides. Numerical results are shown for waveguides illuminated by partially coherent hard x-rays.

© 2014 Optical Society of America

OCIS Codes
(030.0030) Coherence and statistical optics : Coherence and statistical optics
(030.4070) Coherence and statistical optics : Modes
(070.6760) Fourier optics and signal processing : Talbot and self-imaging effects
(230.7390) Optical devices : Waveguides, planar
(340.0340) X-ray optics : X-ray optics

ToC Category:
Coherence and Statistical Optics

History
Original Manuscript: April 8, 2014
Manuscript Accepted: May 31, 2014
Published: July 16, 2014

Citation
Daniele Pelliccia and David M. Paganin, "Coherence filtering and revivals in x-ray waveguides: a communication-modes approach," J. Opt. Soc. Am. A 31, 1754-1761 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1754


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. Gamliel and G. P. Agrawal, “Wolf effect in homogeneous and inhomogeneous media,” J. Opt. Soc. Am. A 7, 2184–2192 (1990). [CrossRef]
  2. P. Hlubina, “Coherence of light at the output of a fibre waveguide analysed in the space-frequency domain,” J. Mod. Opt. 42, 1407–1426 (1995). [CrossRef]
  3. P. Hlubina, “The mutual interference of modes of a few-mode fibre waveguide analysed in the frequency domain,” J. Mod. Opt. 42, 2385–2399 (1995). [CrossRef]
  4. E. Wolf, “Invariance of the spectrum of light on propagation,” Phys. Rev. Lett. 56, 1370–1372 (1986). [CrossRef]
  5. E. Wolf, “Non-cosmological redshifts of spectral lines,” Nature 326, 363–365 (1987). [CrossRef]
  6. Y. P. Feng, S. K. Sinha, E. E. Fullerton, G. Grübel, D. Abernathy, D. P. Siddons, and J. B. Hastings, “X-ray Fraunhofer diffraction patterns from a thin-film waveguide,” Appl. Phys. Lett. 67, 3647–3649 (1995). [CrossRef]
  7. S. Lagomarsino, W. Jark, S. Di Fonzo, A. Cedola, B. R. Müller, C. Riekel, and P. Engstrom, “Submicrometer x-ray beam production by a thin film waveguide,” J. Appl. Phys. 79, 4471–4473 (1996). [CrossRef]
  8. C. Fuhse, C. Ollinger, and T. Salditt, “Waveguide-based off-axis holography with hard x-rays,” Phys. Rev. Lett. 97, 254801 (2006). [CrossRef]
  9. L. De Caro, C. Giannini, D. Pelliccia, C. Mocuta, T. H. Metzger, A. Guagliardi, A. Cedola, I. Burkeeva, and S. Lagomarsino, “In-line holography and coherent diffractive imaging with x-ray waveguides,” Phys. Rev. B 77, 081408R (2008). [CrossRef]
  10. K. Giewekemeyer, H. Neubauer, S. Kalbfleisch, S. P. Krüger, and T. Salditt, “Holographic and diffractive x-ray imaging using waveguides as quasi-point sources,” New J. Phys. 12, 035008 (2010). [CrossRef]
  11. M. Osterhoff and T. Salditt, “Coherence filtering of x-ray waveguides: analytical and numerical approach,” New J. Phys. 13, 103026 (2011). [CrossRef]
  12. J. H. H. Bongaerts, C. David, M. Drakopoulos, M. J. Zwanenburg, G. H. Wegdam, T. Lackner, H. Keymeulen, and J. F. van der Veen, “Propagation of a partially coherent focused X-ray beam within a planar X-ray waveguide,” J. Synchrotron Radiat. 9, 383–393 (2002). [CrossRef]
  13. L. De Caro, C. Giannini, S. Di Fonzo, W. Yark, A. Cedola, and S. Lagomarsino, “Spatial coherence of x-ray planar waveguide exiting radiation,” Opt. Commun. 217, 31–45 (2003). [CrossRef]
  14. D. Pelliccia, I. Bukreeva, M. Ilie, W. Jark, A. Cedola, F. Scarinci, and S. Lagomarsino, “Computer simulations and experimental results on air-gap X-ray waveguides,” Spectrochim. Acta B 62, 615–621 (2007). [CrossRef]
  15. K. J. Tsanaktsidis, D. M. Paganin, and D. Pelliccia, “Analytical description of partially coherent propagation and absorption losses in x-ray planar waveguides,” Opt. Lett. 38, 1808–1810 (2013). [CrossRef]
  16. E. Wolf, “New theory of partial coherence in the space–frequency domain. Part I: spectra and cross spectra of steady-state sources,” J. Opt. Soc. Am. 72, 343–351 (1982). [CrossRef]
  17. P. Martinsson, H. Lajunen, and A. T. Friberg, “Communication modes with partially coherent fields,” J. Opt. Soc. Am. A 24, 3336–3342 (2007). [CrossRef]
  18. D. A. B. Miller, “Spatial channels for communicating with waves between volumes,” Opt. Lett. 23, 1645–1647 (1998). [CrossRef]
  19. D. A. B. Miller, “Communicating with waves between volumes: evaluating orthogonal spatial channels and limits on coupling strengths,” Appl. Opt. 39, 1681–1699 (2000). [CrossRef]
  20. R. Piestun and D. A. B. Miller, “Electromagnetic degrees of freedom in an optical system,” J. Opt. Soc. Am. A 17, 892–902 (2000). [CrossRef]
  21. R. Pierri, A. Liseno, F. Soldovieri, and R. Solimene, “In-depth resolution for a strip source in the Fresnel zone,” J. Opt. Soc. Am. A 18, 352–359 (2001). [CrossRef]
  22. A. Thaning, P. Martinsson, M. Karelin, and A. T. Friberg, “Limits of diffractive optics by communication modes,” J. Opt. A 5, 153–158 (2003). [CrossRef]
  23. A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes applied to axicons,” Opt. Express 12, 377–383 (2004). [CrossRef]
  24. A. Burvall, P. Martinsson, and A. T. Friberg, “Communication modes in large-aperture approximation,” Opt. Lett. 32, 611–613 (2007). [CrossRef]
  25. P. Martinsson, P. Ma, A. Burvall, and A. T. Friberg, “Communication modes in scalar diffraction,” Optik 119, 103–111 (2008). [CrossRef]
  26. P. Martinsson, H. Lajunen, P. Ma, and A. T. Friberg, “Communication modes in vector diffraction,” Optik 121, 2087–2093 (2010). [CrossRef]
  27. D. A. B. Miller, “Fundamental limit for optical components,” J. Opt. Soc. Am. B 24, A1–A18 (2007). [CrossRef]
  28. D. A. B. Miller, “How complicated must an optical component be?” J. Opt. Soc. Am. A 30, 238–251 (2013). [CrossRef]
  29. M. Bertero, C. de Mol, F. Gori, and L. Ronchi, “Number of degrees of freedom in inverse diffraction,” Opt. Acta 30, 1051–1065 (1983). [CrossRef]
  30. H. H. Barrett and K. J. Myers, Foundations of Image Science (Wiley-Interscience, 2004).
  31. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, 1974).
  32. D. Pelliccia and D. M. Paganin, “Coherence vortices in vortex-free partially coherent x-ray fields,” Phys. Rev. A 86, 015802 (2012). [CrossRef]
  33. R. Ulrich, “Image formation by phase coincidences in optical waveguides,” Opt. Commun. 13, 259–264 (1975). [CrossRef]
  34. S. F. Helfert, B. Huneke, and J. Jahns, “Self-imaging effect in multimode waveguides with longitudinal periodicity,” J. Eur. Opt. Soc. Rapid Pub. 4, 09031 (2009). [CrossRef]
  35. I. Bukreeva, A. Cedola, A. Sorrentino, D. Pelliccia, V. Asadchikov, and S. Lagomarsino, “Resonance modes filtering in structured x-ray waveguides,” Opt. Lett. 36, 2602–2604 (2011). [CrossRef]
  36. R. Ulrich and T. Kamiya, “Resolution of self-images in planar optical waveguides,” J. Opt. Soc. Am. A 68, 583–592 (1978). [CrossRef]
  37. K. H. Luo, J. M. Wen, X. H. Chen, Q. Liu, M. Xiao, and L. A. Wu, “Second-order Talbot effect with entangled photon pairs,” Phys. Rev. A 80, 043820 (2009). [CrossRef]
  38. X. B. Song, J. Xiong, X. Zhang, and K. Wang, “Second-order Talbot self-imaging with pseudothermal light,” Phys. Rev. A 82, 033823 (2010). [CrossRef]
  39. K. H. Luo, X. H. Chen, Q. Liu, and L. A. Wu, “Nonlocal Talbot self-imaging with incoherent light,” Phys. Rev. A 82, 033803 (2010). [CrossRef]
  40. V. Torres-Company, J. Lancis, H. Lajunen, and A. T. Friberg, “Coherence revivals in two-photon frequency combs,” Phys. Rev. A 84, 033830 (2011). [CrossRef]
  41. E. Poem and Y. Silberberg, “Photon correlations in multimode waveguides,” Phys. Rev. A 84, 041805 (2011). [CrossRef]
  42. M. Berry, I. Marzoli, and W. Schleich, “Quantum carpets, carpets of light,” Phys. World 14, 39–44 (2001).
  43. E. Lau, “Beugungserscheinungen an Doppelrastern,” Ann. Phys. 437, 417–423 (1948). [CrossRef]
  44. J. Jahns and A. W. Lohmann, “The Lau effect (a diffraction experiment with incoherent illumination),” Opt. Commun. 28, 263–267 (1979). [CrossRef]
  45. F. Gori, “Lau effect and coherence theory,” Opt. Commun. 31, 4–8 (1979). [CrossRef]
  46. R. Sudol and B. J. Thompson, “An explanation of the Lau effect based on coherence theory,” Opt. Commun. 31, 105–110 (1979). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: AVI (4880 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited