OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A


  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1766–1772

Optical phase under deep turbulence conditions

Mikhail I. Charnotskii  »View Author Affiliations

JOSA A, Vol. 31, Issue 8, pp. 1766-1772 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (546 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The Markov approximation for waves in random media specifies that, under strong scintillation conditions, the optical field of unbounded waves has a normal probability distribution with zero mean. Using the coherence function provided by the Markov approximation, we calculate statistics of the phase of the optical field that accounts for the presence of multiple phase dislocations. We also develop and test a Monte Carlo model that generates the phase samples obeying these statistics. In contrast to numerous phase models described in the literature, this model generates discontinuous phase samples that contain optical vortices.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1330) Atmospheric and oceanic optics : Atmospheric turbulence
(030.6600) Coherence and statistical optics : Statistical optics
(110.0115) Imaging systems : Imaging through turbulent media

ToC Category:
Atmospheric and Oceanic Optics

Original Manuscript: March 18, 2014
Revised Manuscript: June 16, 2014
Manuscript Accepted: June 18, 2014
Published: July 23, 2014

Virtual Issues
Vol. 9, Iss. 10 Virtual Journal for Biomedical Optics

Mikhail I. Charnotskii, "Optical phase under deep turbulence conditions," J. Opt. Soc. Am. A 31, 1766-1772 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. I. Charnotskii, “Common omission and misconceptions of wave propagation in turbulence: discussion,” J. Opt. Soc. Am. A 29, 711–720 (2012). [CrossRef]
  2. M. E. Gracheva and A. S. Gurvich, “Strong fluctuations in the intensity of light propagated through the atmosphere close to the earth,” Radiophys. Quantum Electron. 8, 511–515 (1965).
  3. G. R. Ochs, R. R. Bergman, and J. R. Snyder, “Laser-beam scintillation over horizontal paths from 5.5 to 145 kilometers,” J. Opt. Soc. Am. 59, 231–234 (1969). [CrossRef]
  4. N. Perlot, D. Giggenbach, H. Henniger, J. Horwath, M. Knapek, and K. Zettl, “Measurements of the beam-wave fluctuations over a 142  km atmospheric path,” Proc. SPIE 6304, 63041O (2006). [CrossRef]
  5. M. A. Vorontsov, G. W. Carhart, V. S. Rao Gudimetla, T. Weyrauch, E. Stevenson, S. L. Lachinova, L. A. Beresnev, J. Liu, K. Rehder, and J. F. Riker, “Characterization of atmospheric turbulence effects over 149  km propagation path using multi-wavelength laser beacons,” in Proceedings of the 2010 Advanced Maui Optical and Space Surveillance Technologies Conference (AMOS Conference) (Curran, 2010), paper E18.
  6. A. S. Gurvich, M. E. Gorbunov, O. V. Fedorova, G. Kirchengast, V. Proschek, G. González Abad, and K. A. Tereszchuk, “Spatiotemporal structure of a laser beam over 144  km in a Canary Islands experiment,” Appl. Opt. 51, 7374–7383 (2012). [CrossRef]
  7. M. Charnotskii, “Weak and strong off-axis beam scintillations and beam wander for propagation in turbulence,” Proc. SPIE 7685, 768502 (2010). [CrossRef]
  8. V. I. Tatarskii and V. U. Zavorotnyi, “Strong fluctuations in light propagation in a randomly inhomogeneous medium,” in Progress in Optics, E. Wolf, ed. (Elsevier, 1980), pp. 207–256.
  9. V. I. Tatarskii, “Light propagation in a medium with random refractive index inhomogeneities in the Markov random process approximation,” Sov. Phys. JETP 29, 1133–1139 (1969).
  10. V. U. Zavorotnyi, V. I. Klyatskin, and V. I. Tatarskii, “Strong fluctuations of electromagnetic waves in randomly inhomogeneous media,” Sov. Phys. JETP 46, 252–259 (1977).
  11. V. I. Klyatskin and V. I. Tatarskii, “Statistical theory of light propagation in a turbulent medium. (Review),” Radiophys. Quantum Electron. 15, 1095–1112 (1972). [CrossRef]
  12. S. M. Rytov, Yu. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics. 4. Wave Propagation Through Random Media (Springer, 1989).
  13. M. Charnotskii, “Asymptotic analysis of finite-beam scintillation in a turbulent medium,” Waves Random Media 4, 243–273 (1994). [CrossRef]
  14. M. Rosenblatt, Gaussian and Non-Gaussian Linear Time Series and Random Fields (Springer, 2000).
  15. M. Charnotskii, “Sparse Spectrum model for a turbulent phase,” J. Opt. Soc. Am. A 30, 479–488 (2013). [CrossRef]
  16. M. Charnotskii, “Statistics of the Sparse Spectrum turbulent phase,” J. Opt. Soc. Am. A 30, 2455–2465 (2013). [CrossRef]
  17. V. I. Tatarskii, Wave Propagation in a Turbulent Medium (McGraw-Hill, 1961).
  18. J. W. Goodman, Statistical Optics (Wiley, 2000).
  19. R. F. Lutomirski and H. T. Yura, “Wave structure function and mutual coherence function of an optical wave in a turbulent atmosphere,” J. Opt. Soc. Am. 61, 482–487 (1971). [CrossRef]
  20. M. Charnotskii, “Statistical modeling of the point spread function for imaging in turbulence,” Opt. Eng. 51, 101706 (2012). [CrossRef]
  21. D. W. Oesch, D. J. Sanchez, and C. L. Matson, “The aggregate behavior of branch points—measuring the number and velocity of atmospheric turbulence layers,” Opt. Express 18, 22377–22392 (2010). [CrossRef]
  22. I. Freund, “Saddles, singularities, and extrema in random phase fields,” Phys. Rev. E 52, 2348–2360 (1995). [CrossRef]
  23. M. V. Berry, “Disruption of wavefronts: statistics of dislocations in incoherent Gaussian random waves,” J. Phys. A 11, 27–37 (1978). [CrossRef]
  24. N. B. Baranova and B. Ya. Zel’dovich, “Dislocations of the wave-front surface and zeros of the amplitude,” Sov. Phys. JETP 53, 925–929 (1981).
  25. V. V. Voitsekhovich, D. Kouznetsov, and D. Kh. Morzov, “Density of turbulence-induced phase dislocations,” Appl. Opt. 37, 4525–4535 (1998). [CrossRef]
  26. M. Charnotskii, “Intensity fluctuations of flat-topped beam in non-Kolmogorov weak turbulence: comment,” J. Opt. Soc. Am. A 29, 1838–1840 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited