OSA's Digital Library

Journal of the Optical Society of America A

Journal of the Optical Society of America A

| OPTICS, IMAGE SCIENCE, AND VISION

  • Editor: Franco Gori
  • Vol. 31, Iss. 8 — Aug. 1, 2014
  • pp: 1788–1800

Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts

Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand  »View Author Affiliations


JOSA A, Vol. 31, Issue 8, pp. 1788-1800 (2014)
http://dx.doi.org/10.1364/JOSAA.31.001788


View Full Text Article

Enhanced HTML    Acrobat PDF (912 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Recent theoretical and experimental advances have shed light on the existence of so-called “perfectly transmitting” wavefronts with transmission coefficients close to 1 in strongly backscattering random media. These perfectly transmitting eigen-wavefronts can be synthesized by spatial amplitude and phase modulation. Here, we consider the problem of transmission enhancement using phase-only-modulated wavefronts. Motivated by biomedical applications, in which it is not possible to measure the transmitted fields, we develop physically realizable iterative and non-iterative algorithms for increasing the transmission through such random media using backscatter analysis. We theoretically show that, despite the phase-only modulation constraint, the non-iterative algorithms will achieve at least about 25π%78.5% transmission with very high probability, assuming that there is at least one perfectly transmitting eigen-wavefront and that the singular vectors of the transmission matrix obey the maximum entropy principle such that they are isotropically random. We numerically analyze the limits of phase-only-modulated transmission in 2D with fully spectrally accurate simulators and provide rigorous numerical evidence confirming our theoretical prediction in random media, with periodic boundary conditions, that is composed of hundreds of thousands of non-absorbing scatterers. We show via numerical simulations that the iterative algorithms we have developed converge rapidly, yielding highly transmitting wavefronts while using relatively few measurements of the backscatter field. Specifically, the best performing iterative algorithm yields 70% transmission using just 15–20 measurements in the regime, where the non-iterative algorithms yield 78.5% transmission, but require measuring the entire modal reflection matrix. Our theoretical analysis and rigorous numerical results validate our prediction that phase-only modulation with a given number of spatial modes will yield higher transmission than amplitude and phase modulation with half as many modes.

© 2014 Optical Society of America

OCIS Codes
(030.6600) Coherence and statistical optics : Statistical optics
(290.0290) Scattering : Scattering
(290.5825) Scattering : Scattering theory

ToC Category:
Scattering

History
Original Manuscript: February 13, 2014
Revised Manuscript: June 5, 2014
Manuscript Accepted: June 5, 2014
Published: July 24, 2014

Citation
Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand, "Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts," J. Opt. Soc. Am. A 31, 1788-1800 (2014)
http://www.opticsinfobase.org/josaa/abstract.cfm?URI=josaa-31-8-1788

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Log in to access OSA Member Subscription

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited