Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Backscatter analysis based algorithms for increasing transmission through highly scattering random media using phase-only-modulated wavefronts

Not Accessible

Your library or personal account may give you access

Abstract

Recent theoretical and experimental advances have shed light on the existence of so-called “perfectly transmitting” wavefronts with transmission coefficients close to 1 in strongly backscattering random media. These perfectly transmitting eigen-wavefronts can be synthesized by spatial amplitude and phase modulation. Here, we consider the problem of transmission enhancement using phase-only-modulated wavefronts. Motivated by biomedical applications, in which it is not possible to measure the transmitted fields, we develop physically realizable iterative and non-iterative algorithms for increasing the transmission through such random media using backscatter analysis. We theoretically show that, despite the phase-only modulation constraint, the non-iterative algorithms will achieve at least about 25π%78.5% transmission with very high probability, assuming that there is at least one perfectly transmitting eigen-wavefront and that the singular vectors of the transmission matrix obey the maximum entropy principle such that they are isotropically random. We numerically analyze the limits of phase-only-modulated transmission in 2D with fully spectrally accurate simulators and provide rigorous numerical evidence confirming our theoretical prediction in random media, with periodic boundary conditions, that is composed of hundreds of thousands of non-absorbing scatterers. We show via numerical simulations that the iterative algorithms we have developed converge rapidly, yielding highly transmitting wavefronts while using relatively few measurements of the backscatter field. Specifically, the best performing iterative algorithm yields 70% transmission using just 15–20 measurements in the regime, where the non-iterative algorithms yield 78.5% transmission, but require measuring the entire modal reflection matrix. Our theoretical analysis and rigorous numerical results validate our prediction that phase-only modulation with a given number of spatial modes will yield higher transmission than amplitude and phase modulation with half as many modes.

© 2014 Optical Society of America

Full Article  |  PDF Article
More Like This
Iterative, backscatter-analysis algorithms for increasing transmission and focusing light through highly scattering random media

Curtis Jin, Raj Rao Nadakuditi, Eric Michielssen, and Stephen C. Rand
J. Opt. Soc. Am. A 30(8) 1592-1602 (2013)

Harnessing randomness to control the polarization of light transmitted through highly scattering media

Santosh Tripathi and Kimani C. Toussaint
Opt. Express 22(4) 4412-4422 (2014)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (10)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (64)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.